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Tactical Target Date Funds

Abstract

We show that saving for retirement in target date funds (TDFs) modified to take ad-

vantage of predictability in excess returns driven by the variance risk premium generates

economically large welfare gains. We call these funds tactical target date funds (TTDFs).

To be easily implementable and communicated to investors, the portfolio rule followed by

TTDFs is designed to be extremely simplified relative to the optimal policy rules. Despite

this significant mis-specification, substantial welfare gains persist. Importantly, these gains

remain economically important even after we introduce restrictions that limit turnover to

empirically observed magnitudes for mutual funds, and after we take into account potential

increases in transaction costs. Crucially, we show that this predictability is not correlated

with individual household risk, confirming that households are in a prime position to exploit

this premium.

JEL Classification: G11, D14, D15

Key Words: Target date funds, life cycle portfolio choice, retirement savings, variance

risk premium, strategic asset allocation, tactical asset allocation, market timing.



1 Introduction

The conventional financial advice is that households should invest a larger proportion of

their financial wealth in the stock market when young and gradually reduce the exposure

to the stock market as they grow older. This advice is given by several financial planning

consultants (for instance, Vanguard1) who recommend target-date funds (TDFs) that reduce

exposure to the stock market as retirement approaches. The long term investment horizon

in these funds, and the slow decumulation of risky assets from the portfolio as retirement

approaches, can be thought of as strategic asset allocation (see Campbell and Viceira, 2002),

where a long term objective (financing retirement) is optimally satisfied through the TDF.

This investment approach arises naturally in the academic literature in the presence of un-

diversifiable labor income risk (for example, Cocco, Gomes, and Maenhout (2005), Gomes

and Michaelides (2005), Polkovnichenko (2007), and Dahlquist, Setty and Vestman (forth-

coming)).2 Moreover, the most recent empirical evidence shows that, even outside of these

pension funds, households follow this life-cycle investment pattern (Fagereng, Gottlieb and

Guiso (2017)).

In this paper we investigate whether exploiting time variation in expected returns can sig-

nificantly enhance the strategic asset allocation perspective of a life cycle investor saving for

retirement, through tactical asset allocation movements over a quarterly frequency.3,4 More

precisely we consider a recently proposed predictability factor, the variance risk premium

(hereafter VRP) proposed by Bollerslev, Tauchen and Zhou (2009) and Bollerslev, Marrone,

Xu, and Zhou (2014)). Crucially, we explore how the welfare gains from the optimal policies

1See Donaldson, Kinniry, Aliaga-Diaz, Patterson and DiJoseph (2013).
2Benzoni, Collin-Duffresne, and Goldstein (2007), Lynch and Tan (2011) and Pastor and Stambaugh

(2012) show that this conclusion can be reversed under certain conditions.
3In models without labor income Kim and Omberg (1996), Brennan, Schwartz and Lagnado (1997),

Brandt (1999), Campbell and Viceira (1999), Balduzzi and Lynch (1999), Barberis (2000), Campbell et.
al. (2001 and 2003), Wachter (2002), Liu (2007), Lettau, and Van Nieuwerburgh (2008), and Johannes,
Korteweg and Polson (2014) among others, show that optimal stock market exposure varies substantially as
a response to time variation in the equity risk premium.

4The portfolio choice literature is not limited to the papers studying time variation in the equity risk
premium. For example, Munk and Sorensen (2010) and Koijen, Nijman, and Werker (2010) focus on time
variation in interest rates and bond risk premia, while Brennan and Xia (2002) study the role of inflation.
Chacko and Viceira (2005), Fleming, Kerby and Ostdiek (2001 and 2003) and Moreira and Muir (2017a
and 2017b) consider time variation in volatility, while Buraschi, Porchia and Trojani (2010) incorporate
time-varying correlations.
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can be replicated through simple strategies that can be easily implemented by improved

target date funds, in the same spirit as the optimal life-cycle strategies are replicated by

the current TDFs. Building on our initial discussion, we refer to those modified funds as

Tactical Target Date Funds (hereafter TTDFs).

Our focus on the predictability driven by the VRP is motivated not only by its empirical

success as a predictive factor but also by the high-frequency nature of this time variation in

expected returns. More traditional predictive variables, such as CAY (Lettau and Ludvigson

(2001)) or the dividend-yield, capture lower frequency movements (both are more persistent

than the VRP) and tend to be associated with bad economic conditions and/or discount

rate shocks, both of which might affect households directly.5 On the other hand, the VRP

predictability is more likely driven by constraints on banks, pension funds and mutual funds

(e.g. capital constraints or tracking error constraints). Such high frequency predictability is

unlikely to be significantly correlated with household-level risks.

We make this argument empirically by presenting evidence from the Consumer Expendi-

ture Survey (CEX). Specifically, we document that states of the world with high realizations

of the VRP do not predict decreases in the household consumption growth, either in the

near or in the distant future. Furthermore, they do not predict increases in cross-sectional

consumption risk as captured by the cross-sectional standard deviation, skeweness or kur-

tosis. Moreover, this conclusion holds regardless of whether we condition on stockholder or

non-stockholder status, thereby showing that the results do not arise from not conditioning

on the stock market participation status (Vissing-Jorgensen (2002)). Importantly, we also

show that this holds even though stockholders are shown to bear a disproportionate amount

of long run consumption risk as in Malloy, Moskowitz and Vissing-Jorgensen (2009).

As a result of this evidence we can conclude that households are in a prime position

to ”take the other side” and exploit this premium. Furthermore, in general equilibrium,

as households own the financial intermediaries, this adds a further motivation to take the

other side of this trade. If those institutional investors are forced to scale down their risky

positions when VRP is high because of exogenous constraints, then households should be

5Bad economic conditions will tend to be associated with negative labor income shocks, while discount
rate shocks might reflect increased risk aversion from households.
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keen to offset this by increasing the risk exposure in their individual portfolios. Perhaps

equivalently, a deterministic life style fund completely ignores market information that a

sophisticated household might choose to use.

One contribution of our paper is to show how a life cycle model at a quarterly frequency

generates similar quantitative insights to the more traditional annual frequency models solved

in the literature. Nevertheless, we do not focus on quantifying the welfare gains from follow-

ing an optimal policy.6 Instead, we use the output of the model to design an approximate

portfolio rule that can be easily implementable by an improved target date fund and thus

be transparently communicated to investors. This is an important consideration since indi-

vidual investors are increasingly expected to be the ones to decide where to allocate their

retirement savings, and several of them have limited financial literacy and might be skeptical

about complex financial products.7 Furthermore, we show that despite being an approximate

portfolio rule, the rule is still able to capture a significant fraction of welfare gains implied

by the optimal policy functions from the model.

We start our argument by showing that relative to an investor who assumes i.i.d. expected

returns, the investor exploiting VRP predictability (the VRP investor) earns a significantly

higher expected return. This result holds even in the presence of fully binding short-selling

constraints which limit the ability of the VRP investor to exploit the time variation in the

risk premium. Her expected return in such a model is still between 2.5% to 4% higher at each

age (annually). Having identified the optimal portfolio rules and large implied difference in

expected returns within the model, we turn to the main question of our paper. Can we design

improved TDFs that are both transparent and easy to implement and yet can replicate, as

much as possible, those welfare gains?

Existing target date funds do not use the exact policy functions of individual households,

they instead offer an approximation that can be implementable at low cost. For example,

the exact policy functions imply different portfolio allocations for investors with different

6Michaelides and Zhang (2017) incorporate stock market predictability through the dividend-yield and
compute the welfare gains in the context of a life-cycle model of consumption and portfolio choice.

7There is a growing literature documenting the low levels of financial literacy in the population at large.
Lusardi and Mitchell (2014) provide an excellent survey. Guiso, Sapienza and Zingales (2008) show that
trust is an important determinant of stock market participation decisions.
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levels of wealth (relative to future labor income).8 Furthermore, the optimal life-cycle asset

allocation is actually a convex function of age as the investor approaches retirement, not a

linear one. However, the approximate rule is easier to understand for investors that might

have limited financial literacy, and they are the ones who decide where to allocate their

retirement savings. Therefore, in the same spirit as current TDFs, we approximate the

optimal asset allocations with simple linear rules that can be followed by a Tactical Target

Date Fund (TTDF). We estimate the best linear rule from regressions on our simulated data,

where we include as explanatory factors not only age, but also the predictive factor (i.e. the

variance risk premium).9 We further truncate the fitted linear rule by imposing fully binding

short-sale constraints. We do this because it might be hard for funds taking short positions

to be allowed in some pension plans, and even if that is not a concern, they might be a tough

sell among investors saving for retirement that have (on average) limited financial education.

We find that this simple rule generates substantial increases in age-65 wealth accumula-

tion and certainty equivalent welfare gains. In our analysis we take into account a potential

increase in transaction costs implied by the additional trading implied by the VRP strategy.

Even with a quarterly 0.25% decrease in expected returns due to increased portfolio turnover,

the certainty equivalent gain from the TTDF versus the standard TDF is still 26% for our

baseline calibration. The expected age-65 wealth accumulation is 131% higher. Consistent

with the previous results, we find that the gains are particular higher for investors with

moderate or high risk aversion, essentially households with higher saving. From this analysis

we can conclude that if the TTDFs are introduced, then these investors would benefit the

most from switching from standard TDFs into these new products.

Given that one drawback of the TTDF is that it implies significant turnover, we next

consider versions of the fund where we explicitly restrict quarterly turnover to a maximum

threshold. It is particularly interesting to discuss the case where we set this threshold so that

the average turnover of the constrained TTDF is comparable to the average turnover of the

typical mutual fund (78% from Sialms, Starks and Zhang (2013)). Although the increases

8In a similar spirit to ours, Dahlquist, Setty and Vestman (forthcoming) study simple adjustments to the
portfolio rules of TDFs to take this into account.

9We also explore more sophisticated rules which naturally deliver higher wealth accumulation and utility
gains but, for reeasons just discussed, this one will be our baseline case.
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in expected wealth accumulation are now smaller, the turnover constraint also decreases the

volatility of wealth/consumption. Therefore, even when we impose this constraint the cer-

tainty equivalent gains, although smaller, remain economically meaningful. For the baseline

parameter values the certainty equivalent gain from the TTDF is still 4%.

We further show that different natural extensions to the proposed TTDF can lead to even

larger welfare gains. Those extensions include relaxing the short-sale constraints, considering

a portfolio rule where we allow the age effects to interact with the predictive factor, and

extending the TTDF beyond age 65 by adding a linear portfolio rule for the retirement

period as well. Despite the improved results we believe that all of the above face non-trivial

implementation problems relative to the simpler TTDF, and therefore we only present them

as extensions to our baseline case.

The paper is organized as follows. Section II discusses the VRP measurement and the

VAR model for stock returns. In Section III we show that high realizations of the VRP

are not associated with increased household risk. Section IV outlines the life-cycle model

and discusses the optimal policy functions. Section V discusses the design of the proposed

TTDFs and Section VI explores different extensions. Finally, section VII provides concluding

remarks.

2 Variance Risk Premium and Stock Returns

2.1 VAR model for stock returns

The time variation in expected returns is captured by a predictive factor (ft) and following

Campbell and Viceira (1999) and Pastor and Stambaugh (2012) we construct the following

VAR,

rt+1 − rf = α + βft + zt+1, (1)

ft+1 = µ+ φ(ft − µ) + εt+1, (2)

where rf and rt denote the net risk free rate and the net stock market return, respectively.

The two innovations {zt+1, εt+1} are i.i.d. Normal variables with mean equal to zero and
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variances σ2
z and σ2

ε, respectively. Following Bollerslev, Tauchen and Zhou (2009) and Boller-

slev, Marrone, Xu, and Zhou (2014) we consider the variance risk premium (VRP) as the

predictive factor, i.e. ft ≡ V RPt. The formulation allows for contemporaneous correlations

between zt+1 and εt+1.
10

For comparison we will also be reporting results from a model with i.i.d. excess returns,

in which case

rt+1 − rf = µ+ zt+1. (3)

In order for the i.i.d. model to be comparable to the factor model, the first two unconditional

moments of returns are set to be equal in both cases. We will also consider cases where

additional transaction costs from more active trading negatively impact the expected return

earned by the fund that exploits predictability. This will be implemented by adjusting

appropriately the value of α in equation (1).

2.2 Variance Risk Premium

As in Bollerslev, Tauchen and Zhou (2009) we define the variance risk premium (V RPt) as

the difference between the option-implied variance of the stock market (IVt) and its realized

variance (RVt),

V RPt ≡ IVt −RVt. (4)

The data for the quarterly implied variance index (IVt) are taken from the Federal Reserve

Bank of St. Louis (FRED) while the data for the monthly realized variance (RVt) from Zhou

(2017).11 We convert the monthly realized variance to quarterly by adding the monthly

terms. Figure 1 shows the time series variation in implied variance (IVt), realized variance

(RVt) and the variance risk premium (V RPt). Figure 1 replicates and extends essentially

the original Bollerslev, Tauchen and Zhou (2009) measure.

10Unlike most commonly used predictors of expected returns, the factor that we consider in this paper
(the variance risk premium) is not very persistent. Nonetheless, for generality sake, in the numerical solution
of the model we approximate this VAR using Floden (2008)’s variation of the Tauchen and Hussey (1991)
procedure, designed to better handle the case of a very persistent AR(1) process.

11Available here https://sites.google.com/site/haozhouspersonalhomepage/.
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2.3 VAR Estimation

Table 1 contains the descriptive statistics from the data set. The stock market return has a

quarterly mean of 1.98% with a standard deviation equal to 7.9%. Following the life-cycle

portfolio choice literature we assume an unconditional equity premium below the historical

average, namely 4% at an annual frequency. The net constant real interest rate, rf , equals

0.37% corresponding to 1.5% at an annual frequency.

Table 2 reports the estimation results for the VAR model (equations (1) and (2)). Our

quantitative estimates are largely consistent with the ones in Bollerslev et al. (2009). The

factor innovation is very smooth with a standard deviation (σε) of 0.007. Given these

estimates, we can infer the unconditional variance of unexpected stock market returns from

σ2
z = V ar(rt)− β2σ2

f (5)

The correlation between the factor and the return innovation (ρz,ε) is a potentially im-

portant parameter in determining hedging demands. For most common predictors in the

literature (e.g. dividend yield and CAY) this is a large negative number (see, for example,

Campbell and Viceira (1999) and Pastor and Stambaugh (2012)). By contrast, when the

predictive factor is the VRP, this correlation is estimated as slightly positive, suggesting that

hedging demands are not particularly important in this context.12

3 VRP and Household Consumption Risk

3.1 Discussion

The empirical results in the previous section document that a high value of the VRP forecasts

high expected stock returns next quarter, consistent with the findings in Bollerslev et al.

(2009). However, the optimality of increasing the allocation to stocks when the VRP is high

will be over-stated if the high expected returns next quarter are accompanied by an increase

12Indeed, if we set ρz,ε equal to zero in our model the results are not significantly different from the
baseline. For that reason we do not explore the role of hedging demands in the paper, but those results are
available upon request.
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in risk for households. Therefore, it becomes important for our analysis that this is not the

case, and in this section we provide the corresponding supporting evidence.

It is important to clarify that we are not arguing that the changes in expected returns

forecasted by the VRP do not reflect risk, as such a discussion is beyond the scope of our

paper. We are merely stating that, if it is indeed risk, this risk appears to be faced primarily

by other agents in the economy and not by individual households directly. For example,

institutional investors such as mutual funds or banks face constraints that might lead them

to reduce their risk bearing capacity in these periods.13 If households are not directly exposed

to this risk, it is therefore natural for them to increase their allocation to stocks in these

periods and thus earn the additional premium by effectively taking the other side of this

trade.14 Furthermore, from a general equilibrium perspective, and to the extent that it is

the same households that own the banks and therefore their own wealth that is invested in

pension/mutual funds, a further motivation arises for taking the other side of the VRP. As

institutional investors are forced to scale down their risky positions, then households should

be keen to offset this by increasing the risk in their individual portfolios.

3.2 Consumer Expenditure Survey

We use non-durable consumption and services from the Consumer Expenditure Survey

(CEX) following primarily the methodology in Malloy et. al. (2009).15 We construct quar-

terly consumption growth rates for stockholders and non-stockholders from January 1996 to

December 2015. The CEX is a repeated cross section with households interviewed monthly

over five quarters, enabling us to compute quarterly growth rates at a monthly frequency.

Nevertheless, we cannot follow the same household for more than five quarters, and therefore

membership in a group is used to create a pseudo-panel to track household risk over longer

time periods. Following the literature, we regress the change in log consumption on drivers

not in the model (log family size and seasonal dummies) and use the residual as our quarterly

13For example, tracking error constraints for mutual funds or VAR constraints for banks.
14Naturally if we take the view that a high value of the VRP does not represent an increase in risk at all,

then the same conclusion applies: households should exploit this predictable variation in the risk premium.
15An internet appendix provides further details on data construction than the appendix at the end of this

paper.
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consumption growth measure.

Our model applies primarily to stockholders and we know from prior theoretical and

empirical work that stockholders face different risks from non-stockholders. We therefore

estimate separate measures of risk for the two groups. To determine stockholders we use the

financial information provided in interview five and we also drop any households for which

any of the interviews in the second to fifth quarter are missing. To determine stockholder

status we use the response to the question of owning ”stock, bonds, mutual funds and other

such securities”.

We first show that the main insight from Malloy et. al. (2009), namely that long run

risks matter for stockholders, holds for our updated data set. Specifically, Table A1 in our

appendix replicates Table I from their paper that documents the sensitivity of stockholder

and nonstockholder consumption growth to aggregate consumption growth from NIPA over

different horizons. Specifically, we compute the average consumption growth rate for a

particular group of households (for instance, stockholders) for different horizons s=1, 2, 12,

24, by averaging the log consumption growth rates as

1

N

N∑
i=1

[ci,t+s − ci,t] (6)

where N can vary depending on group and time period and ci,t is the quarterly log consump-

tion of household i at time t.

Table A1 in the appendix shows that the coefficient from regressing a group’s discounted

consumption growth over horizon s = 1, 2, 12, 24 on aggregate discounted16 consumption

growth over the same horizon generates different conclusions across groups. Specifically,

stockholder consumption growth is more sensitive to aggregate consumption growth than

nonstockholder consumption growth. Moreover, the differences are even larger at longer

horizons, supporting the interpretation that stockholders bear a much larger proportion of

stock market risk (Malloy et. al. (2009)). From our perspective, we would like to understand

in the next subsection whether exposure to VRP risk can have a similar interpretation.

16We use a discount factor equal to one to be more comparable with regressions we produce later but the
results are quantitatively similar with a discount factor less than one.
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3.3 Empirical Evidence

How can we determine whether consumption growth risks in the short run and long run are

affected by the VRP? We address this question by reporting results from regressing different

moments of cross-sectional consumption growth on the VRP.

We start by considering regressions of mean consumption growth at different horizons and

for different groups on the current VRP. More precisely, we perform the following regressions

1

N

N∑
i=1

[ci,t+s − ci,t] = αsc + βsc ∗ V RPt + εct , s = 1, 2, 12, 24 (7)

As discussed above, given the nature of the CEX, we can only compute consumption

growth rates for the same agent for up to s = 2. However, motivated by the long-run risk

literature and by the evidence in Malloy et. al. (2009), we also consider the possibility

that a high variance risk premium might signal an increase in long-run consumption risk by

investigating the statistical significance of (βsc) in equation (7) as the horizon s increases.

The estimates of βsc are shown in Panel A of Table 3. The standard errors are computed

using a Newey-West estimator that allows for autocorrelation of up to s−1 lags when s > 1.

For both stockholders and non-stockholders, β1
c is non-significant, indicating that a high

value of VRP is not associated with lower expected future consumption growth rate in the

next quarter. The same conclusion is obtained for s = 2 and the same conclusion arises as

we consider consumption growth rates over multiple years (s = 12 and s = 24). We conclude

that there is no significant relationship between VRP and individual short run or long run

household consumption risk for either stockholders or non-stockholders.

We can repeat the same analysis for higher cross sectional moments of consumption

growth rates. Nevertheless, because higher moments (the standard deviation, skewness and

kurtosis) are not additive like the mean consumption growth rate, we can only report the

regressions for consumption growth rates for s = 1 and s = 2. This is reported in Panels B,

C, and D, of Table 3 where we explore the possibility that the VRP might be associated with

a future increase in cross-sectional consumption risk. We find that high VRP states are not

associated with an increase in either the cross-sectional standard deviation of consumption
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growth or its kurtosis, or with a decrease in its skewness. We conclude that, given the lack

of any statistical significance in these regressions, high VRP states are not associated with

an increase in future cross-sectional household consumption risk.

Overall, our results confirm that high VRP states, while predicting high future expected

returns, are on average not followed by periods of lower household consumption growth or

high cross-sectional dispersion in consumption growth rates.

4 Life-Cycle Asset Allocation Model

Time is discrete, but contrary to most of the life-cycle asset allocation literature we solve

the model at a quarterly rather than an annual frequency. This is crucial to capture the

higher-frequency predictability in expected returns documented by Bollerslev et al. (2009).

Households start working life at age 20, retire at age 65, and live (potentially) up to age 100,

for a total of 324 quarters. In the notation below we will use t to denote calendar time and

a to denote age.

4.1 Preferences and Budget Constraint

In the model there are two financial assets available to the investor. The first one is a

riskless asset representing a savings account. The second is a risky asset which corresponds

to a diversified stock market index. The riskless asset yields a constant gross after tax

real return, Rf , while the gross real return on the risky asset is potentially time varying as

captured by the VAR model described in section 2 (equations (1) and (2)).

The household has recursive preferences defined over consumption of a single non-durable

good (Ca), as in Epstein and Zin (1989) and Weil (1990),

Va = max

{
(1− β)C1−1/ψ

a + β
(
paEa(V

1−γ
a+1 )

) 1−1/ψ
1−γ

} 1
1−1/ψ

, (8)

where β is the time discount factor, ψ is the elasticity of intertemporal substitution (EIS)

and γ is the coefficient of relative risk aversion. The probability of surviving from age a to

age a+ 1, conditional on having survived until age a is given by pa+1.
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At age a, the agent enters the period with invested wealth Wa and receives labor income,

Ya. Following Gomes and Michaelides (2005) we assume that an exogenous (age-dependent)

fraction ha of labor income is spent on (un-modelled) housing expenditures.

Letting αa denote the fraction of wealth invested in stock at age a, the dynamic budget

constraint is

Wa+1 = [αaRt+1 + (1− αa)Rf ](Wa − Ca) + (1− ha+1)Ya+1 (9)

where Rt is the return realized that period (so when t = a).In the baseline specification we

assume binding short sales constraints on both assets, more precisely

αa ∈ [0, 1] (10)

In practice it is expensive for households to short financial assets and relaxing these assump-

tions would require introducing a bankruptcy procedure in the model. In the context of

the life cycle fund shorting will be cheaper, but still not costless, and this will still require

making assumptions about the liquidation process in case of default. For these reasons the

baseline model assumes fully binding short-selling constraints but we will also discuss results

where we relax these.

4.2 Labor Income Process

The labor income follows the standard specification in the literature (e.g. Cocco et al.

(2005)), such that the labor income process before retirement is given by17

Ya = exp(g(a))Y p
a Ua, (11)

Y p
a = Y p

a−1Na (12)

where g(a) is a deterministic function of age and exogenous household characteristics (educa-

tion and family size), Y p
a is a permanent component with innovation Na, and Ua a transitory

17We are assuming that the quarterly data generating process for labor income is the same as the one at
the annual frequency. The calibration section discusses this in more detail.
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component of labor income. The two shocks, lnUa and lnNa, are independent and identi-

cally distributed with mean {−0.5× σ2
u,−0.5× σ2

n}, and variances σ2
u and σ2

n, respectively.

We allow for correlation between the permanent earnings innovation (lnNa) and the shocks

to the expected and unexpected returns (εa+1 and za+1, respectively).

The unit root process for labor income is convenient because it allows the normalization

of the problem by the permanent component of labor income (Y p
a ). Letting lower case letters

denote the normalized variables the dynamic budget constraint becomes

wa+1 =
1

Na+1

[rt+1αia + rf (1− αia)](wa − ca) + (1− ha+1) exp(g(a+ 1))Uia+1. (13)

As common in the literature the retirement date is exogenous (a = K, corresponding

to age 65) and income is modelled as a deterministic function of working-time permanent

income

Ya = λY p
K for a > K (14)

where λ is the replacement ratio of the last working period permanent component of labor

income.

4.3 Estimation and Calibration

We take the deterministic component of labor income (g(a)) from the estimates in Cocco

et al. (2005) and linearly interpolate in between years to derive the quarterly counterpart.

Likewise we use their replacement ratio for retirement income (λ = 0.68). Cocco et al.

(2005) estimate the variances of the idiosyncratic shocks around 0.1 for both σu and σn at

an annual frequency. Since we assume that the quarterly frequency model is identical to the

annual frequency model it can then be shown that the transitory variance (σ2
u) remains the

same as in the annual model, while the permanent variance (σ2
n) should be divided by four.

Angerer and Lam (2009) note that the transitory correlation between stock returns and

labor income shocks does not empirically affect portfolios and this is consistent with sim-

ulation results in life cycle models (Cocco, Gomes, and Maenhout (2005)). We therefore

set the correlation between transitory labor income shocks and stock returns equal to zero.
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The baseline correlation between permanent labor income shocks and unexpected stock re-

turns (ρn,z) is set equal to 0.15, consistent with the mean estimates in most empirical work

(Campbell et. al. (2001), Davis, Kubler, and Willen (2006), Angerer and Lam (2009) and

Bonaparte, Korniotis, and Kumar (2014)). We set the correlation between the innovation

in the factor predicting stock returns and the permanent idiosyncratic earnings shocks (ρn,ε)

to zero as there is no available empirical guidance on this parameter.

Finally, we take the fraction of yearly labor income allocated to housing from Gomes and

Michaelides (2005). This process is estimated from Panel Study Income Dynamics (PSID)

and includes both rental and mortgage expenditures. As before, to obtain an equivalent

quarterly process we linearly interpolate across years.

We use preference parameters previously used (Gomes and Michaelides (2005)) or esti-

mated (Cooper and Zhu (2016)) in the literature using U.S. data. The discount factor is

0.9875 (annual equivalent around five percent), the elasticity of intertemporal substitution

equal to 0.5 and relative risk aversion coefficient equal to 5.0. We have undertaken extensive

comparative statics around these parameters that we do not report to keep the paper concise.

4.4 Optimal portfolio allocation

We first document the optimal life-cycle portfolio allocations in the model with time-varying

expected returns (henceforth VRP model) for a baseline value of preference parameters for

the investor (henceforth VRP investor). These results will form the basis for the next section,

where we propose the tactical target date funds (TTDFs). In the VRP model the optimal

asset allocation is determined by age, wealth and the realization of the predictive factor (the

variance risk premium). In Figure 2 we plot the average share invested in stocks for the VRP

investor when the factor is at its unconditional mean (αa[E(f)]), the mean share across all

realizations of the factor (E[αa(f)]), and the one obtained under the i.i.d. model (E[αiida ]).

In all cases wealth accumulation is being computed optimally using the appropriate policy

functions.

The portfolio share from the i.i.d. model follows the classical hump-shape pattern (e.g.
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Cocco, Gomes and Maenhout (2005)).18 The optimal allocation of the VRP investor, for

the average realization of the predictive factor (αa[E(f)]), shares a very similar pattern and,

except for the period in which both are constrained at one, we have

αa[E(f)] < E[αiida ] (15)

Even though under the two scenarios the expected return on stocks is the same, Figure

2 shows that αa[E(f)] is below one already before age 35 and from then onwards it is

always below E[αiida ]. The main driving force behind this result is the difference in wealth

accumulation of the two investors. As we show below, the VRP investor is richer and

therefore allocates a smaller fraction of her portfolio to risky assets.19

We next compare the optimal risky share for the average realization of the factor (αa[E(f)])

with the optimal average risky share across all factor realizations (E[αa(f)]). If the portfolio

rule were a linear function of the factor the two curves should overlap exactly. However,

Figure 2 shows that there is a substantial difference between the two, particularly early in

life. At this early stage of the life-cycle (age below 45) we have

E[αa(f)] < αa[E(f)] for a < 45 (16)

This result arises from a combination of the short-selling constraints and the fact that

αa[E(f)] is (much) closer to one than to zero. Given the high average allocation to stocks

early in life, for realizations of the factor above its unconditional mean the portfolio rules

are almost always constrained at one. On the other hand, for lower realizations of the pre-

dictive factor the optimal allocation is ”free” to decrease, hence it is lower than αa[E(f)].

As a result, the optimal allocation of the VRP investor is sometimes far below αa[E(f)] and

never exceeds it by much.20

18The increasing pattern early in life is barely noticeable because under our calibration the average optimal
share at young ages is (already) close to one.

19The two policy allocations also differ because the policy rules from the VRP model take into account
the hedging demands, but that effect is quantitatively much less important.

20It is similar to averaging a truncated distribution where the trunctation is mostly binding at the upper
limit.
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Building on the previous intuition, it is not surprising to find that the sign of inequality

flips once the portfolio allocation at the mean factor realization (αa[E(f)]) falls below 50%,

which takes place around age 45. Now the more binding constraint is the short-selling

constraint on stocks so we have:

E[αa(f)] > αa[E(f)] for a > 45 (17)

This comparison suggests that the welfare gains from the VRP model are likely to be much

higher if we relax the short-selling constrains, which motivates our discussion of this partic-

ular extension in Section 6.

Combining inequalities (15) and (16) it is easy to see that, until age 45, we have:

E[αa(f)] < E[αiida ] (18)

namely that the average portfolio allocation in the VRP model (E[αa(f)]) will be much

lower than the one in the i.i.d. model (E[αiida ]), and the intuition follows from the previous

discussions. In fact, even after age 45, when (16) is replaced by (17), we see that, although

the difference between the optimal allocation of the VRP and i.i.d. investors decreases,

equation (18) still holds: inequality (15) dominates inequality (16).

4.5 Portfolio returns

In this section we study the differences in expected returns between the VRP and i.i.d.

investors. To avoid repetition we ignore transaction costs in these calculations, since we will

naturally consider them in the next section when we discuss the implementation of these

portfolio rules in the context of the improved target-date funds. In Figure 3 we plot the

(annualized) average expected portfolio returns at each age

E(RP
t+1) = αaEt[Rt+1] + (1− αa)Rf , a = 1, ..., T (19)

which are computed by averaging (at each age) across all simulations.
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Since we are averaging across all possible realizations of the factor, for a constant portfolio

allocation (α), this would be a flat line. For example, if α = 1, this would be equal to the

average equity portfolio return, regardless of age. In the i.i.d. model this line essentially

inherits the properties of the optimal {αa}Ta=1. The (annualized) expected portfolio return

is around 5% early in life, increases slightly in the first years and then decays gradually as

the investor approaches retirement and thus shifts towards a more conservative portfolio. In

the VRP model the same average life-cycle pattern is present but now, since the household

increases (decreases) αa when the expected risk premium is high (low), the line is shifted

upwards. As a result, even though as shown in Figure 2 the VRP investor has on average a

lower exposure to stocks than the i.i.d. investor, her expected return is actually higher.

The vertical difference between the two lines gives us a graphical representation of the

additional expected excess return that is actually earned by the VRP investor, and to facili-

tate the exposition we also plot it as a separate line in the figure. From age 37 onwards this

difference increases monotonically, as the lower average equity share makes the short-selling

constraint less binding and thus the VRP investor is more able to exploit time-variation in

the risk premium. As the two agents reach retirement, the difference in expected returns is

almost 4%. This difference is therefore at its maximum exactly when these investors have

the highest wealth accumulation.

5 Tactical Target-date Funds

In the previous section we derived the optimal life-cycle policy functions from the model.

However, these are not feasible options for a mutual fund. For example, current target date

funds do not use the exact policy functions of individual households. They instead offer

an approximation that can be implementable at low cost, using a roughly linear or piece-

wise linear function of age. This is an approximation to the typical optimal solution for

the i.i.d. model which follows a hump shape pattern early in life, even though not very

pronounced for low levels of risk aversion, and has a convex shape later on as the investor

approaches retirement. However, as the exact patterns of optimal policy will vary across

individuals based on their preferences and other important factors (e.g. labor income profile
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and wealth accumulation), the linear function has the dual advantage of being simple to

explain and a reasonable approximation to an heterogeneous set of optimal life-cycle profiles.

This approach benefits from the further advantage that such a simpler strategy can be more

easily communicated to investors that might have limited financial literacy, and are the ones

who decide where to allocate their retirement savings.

In the same spirit, and in our baseline specification, we derive a relatively straightforward

portfolio rule that can be implemented by an improved target date fund (the TTDF) and

which will aim to capture a large fraction of the welfare gains previously described. More

precisely, we derive optimal policy rules that consist of linear functions of age and of the

predictive factor. If we design more complicated rules we could potentially increase the

certainty equivalent gains, and in fact we also explore some alternative portfolio rules along

these lines. On the other hand, the more complicated rules are more likely to suffer from

over-fitting or model misspecification. Finally, in this section, both for the i.i.d. and for

the VRP cases, we further constrain the estimated portfolio rules by forcing them to satisfy

the short-selling constraints. Later on we discuss the results obtained when we relax this

constraint.

5.1 Designing Tactical Target-date Funds

5.1.1 Tactical TDF with the VRP as a regression covariate (TTDF)

The simplest extension of the traditional TDF portfolio that incorporates the predictability

channel is obtained by adding the predictive factor as an additional explanatory variable in

a linear regression. More precisely, we use the simulated output from the model to estimate

αiat = θ0 + θ1 ∗ a+ θ2 ∗ ft + εiat. (20)

Relative to the optimal simulated profiles this regression is quite restrictive as, in addition

to linearity, it implies that both the regression coefficient on age (θ1) and the intercept (θ0)

are the same regardless of the realization of the factor state. However, as previously argued,

this is simple to implement and easier to explain to investors.
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Table 4 and Figure 4 report the regression results from these rules for the baseline case

of relative risk aversion equal to 5 and, for comparison, the results for the i.i.d. model.21

Table 4 also reports the fitted linear rules for other values of risk aversion (2 and 10). These

would correspond to three different TTDFs, each targeted to investors with different levels

of risk aversion.

The life-cycle asset allocations for both the i.i.d. and the VRP baseline model are reason-

ably well captured by a linear regression rule. Despite the higher complexity of the optimal

portfolio rules in the VRP case, the R-squared of the fitted linear regression is actually

higher: 74% versus 45%. This is due to the lower implied average allocation to stocks, as

already documented in Figure 2, which makes the short-selling constraints less binding. In

the regression specification, age is expressed in quarters starting for quarter 1, as in the

model. Therefore, the rule age pattern for the i.i.d. case is slightly steeper than the pop-

ular “100-age” rule followed by several existing target-date funds, but not far away from

it. Similarly, the average age pattern of the VRP rule is slightly flatter than the 100-age

rule but, likewise, not very different from it. Of course under the VRP rule (equation (20))

the allocation also changes with the predictive factor. For example, for sufficiently high (or

sufficiently low) values of this factor, the short-selling constraints can become binding. Later

on, when evaluating these strategies, we discuss their implied turnover.

In the last two columns of Table 4 we report the regression results for different values

of relative risk aversion. As risk aversion decreases the coefficient on the predictive factor

increases (in absolute value), consistent with the discussion in the previous section. The

less risk averse investor is more willing to take advantage of time variation in expected

returns. However, as also previously discussed, given that the less risk averse investor has an

average portfolio allocation that is much closer to 1, her ability to actually follow the optimal

market timing strategy is more limited by the presence of the short-selling constraints. This

is reflected in the significantly lower regression R2: 58 percent versus 74 (73) percent for

relative risk aversion equal to 5 (10).

21These are regressions on data simulated from the model so the t-statistics are all extremely high almost
by definition, and therefore are omitted from the table.
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5.1.2 Tactical TDF conditioning on the VRP (TTDF2)

As previously discussed, the portfolio rule based on equation (20) is very straightforward

but quite restrictive. Therefore, we also consider an alternative formulation where we fit

the simulated shares of wealth in stocks on age using separate regressions conditional on

the different realizations of the predictive factor. That is, we run the following series of

regressions for each fj in our discretization grid

αiat = Ift=fjθ
j
0 + Ift=fj ∗ θ

j
1 ∗ a+ εjiat, for each fj (21)

where Ift=fj equals to 1 if ft = fj and equals to 0 otherwise.

The results are shown in Table 5 and Figure 5. Table 5, Panel A reports for the baseline

case of risk aversion equal to 5 the regression results for three different values of fj : the mean,

plus two and minus two standard deviations of the factor (VRP).22 Panels B and C report

the same results for risk aversions of 2 and 10, respectively. As we can see, a realization

of the factor at plus (minus) two standard deviations away from the mean already imply

a 100% (0%) allocation to stocks regardless of age. This pattern is not captured by the

more restrictive TTDF rule (equation (20)) and is reminiscent of the Brennan, Schwartz and

Lagnado (1997) results of a bang-bang solution with the intermediate cases closer to the

mean having a pronounced age effect due to the presence of undiversifiable labor income.

5.2 Utility gains from Tactical Target Date Funds

5.2.1 Welfare Metric

Having identified a feasible portfolio rule for the TTDF we now proceed to compute the

corresponding certainty-equivalent utility gains. Consistent with the focus of our paper

to design improved target date funds, the baseline welfare calculations are computed by

keeping pre-retirement consumption constant and comparing age-65 certainty equivalents,

following Dahlquist, Setty and Vestman (forthcoming). The differences in certainty equiv-

alents therefore represent the increase or decrease in risk-adjusted consumption levels that

22As before, we again include the results for the i.i.d. investor for comparison.
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the agent will register during the retirement period. This procedure guarantees that the

pre-retirement utility is the same across cases (TDF and TTDF) and therefore the certainty

equivalent gain at retirement captures the full welfare change.

In comparing different rules we assume the same asset allocation rules after retirement,

more precisely we assume that the investor ignores predictability from age 65 onwards. In

other words we are measuring the gains from changing the portfolio rule in the TDF only

(that is, during working life). The gains would naturally be larger if we also allowed the

investor to exploit time-variation in the risk premium during retirement as well, and we

present results for this case in one of our extensions below. Finally, we assume that each

investor is able to identify the fund that matches her level of risk aversion, both for the

TTDFs and the standard TDF.

5.2.2 Tactical Target Date Fund 2 (TTDF2)

It is useful to start the discussion by computing the wealth and welfare changes when the

more sophisticated TTDF2 rule (equation (21)) is used. This is the rule where the regressions

are performed conditional on the factor realization, implying that the age effects are different

across factor realizations. In these calculations, as previously mentioned, we also take into

account a potential increase in transaction costs implied by the market timing strategy. More

specifically, we take into account that the TTDF might face an effectively lower expected

equity return as a result of these costs. We then report the wealth accumulation at age 65 and

certainty equivalent gains from investing in the TTDFs relative to the standard TDF (that is,

the target fund that ignores the market timing information provided by the realization of the

factor). Results are shown for different values of risk aversion and for different assumptions

about the additional transaction costs (tc) faced (only) by the TTDF2.23 The results are

reported in Table 6.

We first consider the case with no transaction costs (tc = 0). For all three values of

risk aversion the increases in wealth accumulation at age 65 are extremely high: 201%,

23The standard TDF will also face transaction costs but in our simulations we only explcitly introduce
them for the enchanced fund, which is why we view them as additional costs, over and above those already
faced by the standard TDF.
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260% and 337%. Likewise, the corresponding age-65 certainty equivalent gains are also very

large: 37.8%, 55.3% and 95%, respectively. As we introduce differential transaction costs

for the TTDF2 these values naturally fall. However, even for an arguably large quarterly

transaction cost of 25 basis points (tc = 0.25%), age-65 wealth is higher by more than 100%

for all investors. As a result, the utility gains remain quite high: 38.6% for the baseline risk

aversion of 5, increasing (decreasing) to 78.9% (23.5%) for the risk aversion of 2 (10). For the

reasons that we previously discussed we do not view this rule as a very practical proposition

for a TDF. However, these results suggest that individuals with high financial literacy who

would potentially be willing to invest in such funds if they were introduced, could obtain

very large CE gains from doing so.

5.2.3 Tactical Target Date Fund (TTDF)

We now study the results for the simpler TTDF rule (equation (20)). These are shown in

Table 7, again for different values of risk aversion (γ) and different values of the additional

transaction costs (tc). When considering the case with tc = 0.0 the increases in age-65

wealth accumulation are 103%, 182% and 312%, for risk aversion of 2, 5 and 10, respectively.

The associated CE gains are 20.3%, 40.5% and 80.3% showing that the simple rule proposed

by equation (20) is able to capture extremely large gains. This is particularly remarkable

if we recall that, in this analysis, we are assuming that the investor does not exploit the

predictability in expected returns at retirement.

Importantly, the welfare gains remain economically large even as we introduce the ad-

ditional transaction costs. For the baseline calibration of risk aversion (5), even with a 25

basis points increase in costs, relative to those of the standard TDF, age-65 wealth accumu-

lation is still 131% higher under the TTDF and the certainty equivalent consumption gain

is 26.2%. As before, these values are even higher for the less risk-tolerant investor (64.4%)

and lower for the more risk-tolerant one (10.1%). One implication of these results is that

it would be particularly beneficial to introduce the TTDFs in pension plans with investors

with moderate or high risk aversion (5 or 10). The important point is that households that

have the tendency to be net savers will benefit more from such funds than households with
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lower saving rates. Equivalently, if such funds are offered in parallel with standard target

date funds, investors that save more are the ones that would benefit the most from switching

away from the conventional product.

5.3 Introducing Turnover Restrictions

5.3.1 Approach

One potential concern with the TTDFs, as presented in the previous section, is that their

implementation might imply very high portfolio turnover. The average (annualized) portfolio

turnover of the standard TDF (i.e. the one that replicates the optimal allocation of the i.i.d.

investor) is 23%. For the TTDF investor average turnover rises to 213% indicating that

tactical asset allocation implies a more volatile asset allocation behavior over the life cycle.

By comparison, the average turnover of the typical mutual fund is 78% (see Sialms, Starks

and Zhang (2013)).

In the previous section we included in our analysis additional transaction costs that this

high turnover might generate. In this section we follow a more direct approach where we

explicitly restrict the fund’s turnover. The restriction limits the optimal rebalancing of the

portfolio share to a maximum threshold (k). More precisely, the portfolio rule is subject to

the additional constraint

αa =


αa−1 + k if α∗

a > αa−1 + k

α∗
a if |α∗

a − αa−1| < k

αa−1 − k if α∗
a < αa−1 − k

(22)

where α∗
a is the optimal allocation in the absence of the constraint.

In our analysis we consider two thresholds, k = 25% and k = 15%. We impose equation

(22) ex-post on the previously estimated policy rules, instead of solving the corresponding

dynamic programming problem for two reasons.24 First, even though the optimal policy

function would by definition satisfy constraint (22), that does not guarantee that the cor-

24Any mis-specification of the optimal policy functions will only lead us to under-estimate the utility gains
since the constraint is more binding for the TTDF than the standard TDF.
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responding fitted linear rule estimated from the simulated data would as well.25 Second,

from an implementation perspective this again makes the rule more transparent and easy to

follow and explain to an investor. The asset allocation of the fund is given by the previous

regression specification, which yields α∗
a, subject to this constraint.

5.3.2 Results

In Table 8 we show the results when we impose constraint (22), for the baseline case of an

investor with risk aversion of 5. With a maximum rebalancing limit of 25% the average

turnover of the fund falls almost by half to 107%. When the limit is even stricter (15%),

the average turnover is now only 69%, which is now even below that of the typical mutual

fund (78% as mentioned above). High fund turnover was the motivation for including the

additional transaction costs in the previous subsection. Therefore, since we are now limiting

fund turnover directly, in these results we only consider the cases with tc = 0.0 and tc =

0.10%.

The constraints naturally limit the fund’s ability to exploit time-variation in the risk

premium and this is reflected in lower expected wealth accumulation. For example, for tc = 0

the expected increase in age-65 wealth accumulation for the baseline case (risk aversion of 5)

was 269% in the absence of the turnover constraints, but falls to 45% and 14% for k = 25%

and k = 15%, respectively. However, this is accompanied by an equally significant reduction

in the impact on the standard deviation of (age-65) wealth. In the absence of turnover

constraints this standard deviation had increased by 462%, whereas now the percentage

change is limited to 48% and 5%, respectively.

As we introduce these additional restrictions the extremely large welfare gains that we

previously documented are reduced, but we still obtain values that are economically quite

meaningful and, we would argue, much more reasonable. With tc = 0.0 the certainty equiv-

alent gains for the baseline case (risk aversion of 5) are 11.1% and 3.7%, for k = 25% and

k = 15%, respectively. Even with tc = 0.1% both of these still remain positive: 7.2% and

0.4%, respectively.

25This is the same issue we already had before with the short-selling constraints and these also had to be
imposed ex-post.

24



As we consider investors with either higher or lower risk aversion we again find that

the certainty equivalent gains are particularly larger for the former. Even with the tighter

turnover restriction (k = 15% and tc = 0.10%), the investor with risk aversion of 10 still

accumulates 83% more wealth at age 65, on average, by using the TTDF. This corresponds

to a certainty equivalent gain of 22%. Across all cases, the investment in the TTDF only

leads to certainty equivalent loss for one them: the combination of the tighter turnover

restriction and additional transaction costs for the investor with risk aversion 2. But as

just discussed, even under this combination the investor with risk aversion of 10 still has a

certainty equivalent gain of 22%.

Two of the tc = 0.0 cases are particularly interesting: the one for the investor with risk

aversion of 2 and k = 25% , and the one for the investor with risk aversion of 5 and k = 15%.

In both of these the change in the standard deviation of age-65 wealth is very small, −2%

and 5% respectively, yet there are meaningful differences in wealth accumulation: 23% in

the first case and 14% in the second. So for a very similar level of ex-ante risk the investor

is obtaining a noticeable difference in average expected wealth. This is reflected in certainty

equivalent gains of 4.9% and 3.7%.

Overall, the results in Table 8 confirm that it is possible to design a relatively simple

target date fund rule that exploits the risk premium predictability obtained from the VRP,

while only requiring standard levels of turnover, and being able to generate economically

large welfare gains for a wide range of investors, especially the ones that are net savers over

the working life cycle.

6 Extensions

6.1 Relaxing the short-selling constraints

As shown in Figure 5, the optimal portfolio allocation implied by the VRP strategy is

sometimes constrained at either 100% or 0%. These results suggest that the utility gains

from the VRP strategy are likely to be higher if we relax the short-selling or borrowing

constraints. In the life-cycle asset allocation literature it is common to impose fully binding
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short-selling and borrowing constraints since it is particularly hard or expensive for retail

investors to engage in unsecured borrowing or short-selling. Moreover, a mutual fund that

takes leveraged positions might not be regarded as an acceptable choice by some pension plan

providers. Nevertheless, the proposed TTDF strategy will be implemented by a mutual fund

and hence it should be much cheaper and feasible to take both borrowing and short-selling

positions.

In this section we therefore investigate the case in which the TTDF can increase its

allocation to stocks as far as 200% through borrowing at the same riskless rate, that is:

αa ∈ [0, 2] (23)

For the range of parameter values that we consider the upper bound on this constraint

becomes less binding. We could potentially also relax the short-selling constraint on the

risky asset and the welfare gains would be even higher, but that particular constraint is

less binding given that the average allocation to stocks is above 50%. Furthermore, short-

selling the aggregate stock market is typically harder and more expensive to implement than

borrowing to invest in stocks.

In the i.i.d. model the household borrows to invest in the stock market early in life and

then the pronounced life cycle effect of lowering the share of wealth in stocks takes over.

We use this rule to construct the TDF for the i.i.d. model (the strategic asset allocation

benchmark). In this model stock market turnover now rises to 113% relative to 23% in the

benchmark analyzed earlier. We follow a similar strategy for the TTDF. Table 9 reports the

differences in wealth accumulation and CE gains from taking advantage of the TTDF when

we relax the short-selling constraint on the riskless asset for both funds.26

Comparing these results with those in Tables 7 and 8, where short-selling was completely

ruled out, we find significant increases in certainty equivalent gains. Without any turnover

restrictions (columns II to IV) the welfare gains more than double in size, increasing from

91.8% (40.5%) to 67.3% (26.2%) for tc = 0 (0.25%). A less tight short-selling constraint

26We maintain all other assumptions as in the baseline case, namely relative risk aversion of 5. Results
for other values of risk aversion are available upon request.
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(equation (23)), significantly increases the TTDF’s ability to exploit the time-variation in

the expected risk premium.

One potential concern here is that this strategy implies significantly higher portfolio

turnover. In fact, we see that average fund turnover is now 360% as opposed to 213% for

the case with fully binding short-selling constraints. To address this concern Table 9 also

reports results with the exogenous constraint on trading (equation (22)). As we introduce

the tighter version of constraint (k = 15%) portfolio turnover drops significantly, to around

73%. The welfare gains naturally decrease substantially but, as before, remain economically

significant. As we compare them with the ones in Table 8 we find that they are very similar

but still higher. For example, for tc = 0.0, the certainty equivalents are now 13.2% and 5.2%

for k = 25% and k = 15%, respectively, compared with 11.1% and 3.7% in Table 8.

We conclude that relaxing the short-selling constraint on the riskless asset can increase

the welfare gains from investing in the TTDF, even if we restrict the fund’s turnover to

reasonable levels.

6.2 Adding VRP strategies during retirement

In the previous section the investor only exploited time variation in expected returns before

retirement through the TTDF. The goal was to isolate the role of the TTDF and thus show

how introducing these market timing strategies in a target date fund alone could improve

welfare. In this section we consider the benefits of trying to capture the VRP strategy

throughout the life-cycle. For this purpose we consider a combination of the simple TTDF

with an otherwise equally designed fund for the retirement period. More precisely, we run

a second regression given by equation (20) for ages greater than 65. From this we obtain

a linear portfolio rule for the retirement period which complements the TTDF, that is a

TTDF in retirement.

The results are shown in Table 10 for the baseline case of risk aversion 5 and with

turnover restrictions to keep trading volume consistent with that of typical mutual funds.

As expected, the welfare gains are now even larger. For the tighter turnover restrictions

the certainty equivalent gains are between 12.3% and 20.1% substantially larger than the
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comparable ones from Table 8 (0.4% to 3.7%, respectively).

7 Conclusion

We analyse how target date funds can combine the long term strategic asset allocation

perspective of a life cycle investor with the short term market information that gives rise to

tactical asset allocation. We rely on the variance risk premium (VRP) as the main factor

producing variation in the expected risk premium in quarterly frequency and embed this

in a life cycle model to derive optimal saving and asset allocation. We then show how

enhanced funds, which we call Tactical Target Date Funds (TTDFs), can be designed in

a parsimonious way and can deliver substantial welfare gains. These gains are substantial

and remain economically large even after we include transaction costs and further explicitly

restrict the turnover of the TTDF. In unreported experiments we extend the analysis to a

wider set of preference parameter configurations and different models of investor behavior

during retirement. Further research into the design and commercialization of the proposed

TTDFs, and the potential complications that may arise in such implementations, is an

interesting topic for future research.
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Appendix
Consumer Expenditure Survey

We use non-durable consumption and services aggregated from the CEX and exclude

durables, implicitly assuming that utility is separable between durables and non-durables

and services. This also allows comparison with earlier literature, particularly Malloy et. al.

(2009). The service categories relating to durables are also excluded (housing expenses but

not costs of household operations), medical care costs, and education costs as they have

substantial durable components.

Our CEX sample choice follows Malloy et. al. (2009). Extreme consumption outliers for

which consumption growth is less than 0.2 and greater than 5.0 are dropped. To determine

stockholders we use the financial information provided in interview five and we also drop

any households for which any of the interviews in the second to fifth quarter are missing.

To determine stockholder status we use the response to the category ”stock, bonds, mutual

funds and other such securities”.

Table A1: Sensitivity of Household Consumption Growth to Aggregate Consumption Growth

Table A1 presents the sensitivity of stockholder and non-stockholder consumption growth
to aggregate consumption growth taken from NIPA for horizons of S = 1, 2, 12, and 24
quarters. The sensitivity is computed as the regression coefficient from regressing a group’s
consumption growth over horizon S on current aggregate consumption growth. Below each
entry we include the t-stat. Standard errors are computed using a Newey-West estimator
that allows for autocorrelation of up to S − 1 lags when S > 1.

Mean Consumption Growth
S 1 2 12 24

Stockholders 1.05 1.12 1.53 0.97
(t-stat) (0.94) (1.45) (4.14) (4.77)

Non-Stockholders 0.78 0.61 0.94 0.55
(t-stat) (1.17) (1.89) (3.83) (3.36)
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Table 1: Descriptive Statistics for Returns and Variance Risk Premium

Table 1 presents descriptive statistics of quarterly data from 1990Q1 to 2016Q3: r denotes
the real return on the S&P 500 index (deflating using the consumer price index (CPI)), IV
denotes the quarterly ”model free” implied variance or VIX index, and RV is the quarterly
”model free” realized variance. Inflation (π) is derived from CPI. This series and the S&P
500 index are from the Center for Research in Security Prices (CRSP).

Panel A: Summary Statistics
1990Q1 –2016Q3 r IV RV IV −RV π

Mean (%) 1.98 1.11 0.62 0.49 0.60
SD (%) 7.84 0.94 0.98 0.75 0.80
Kurtosis 3.24 8.16 54.23 31.83 9.64
Skewness -0.40 2.25 6.45 -3.24 -1.39

AR(1) 0.00 0.41 0.47 -0.17 0.001

Panel B: Correlation Matrix
1990Q1 –2016Q3 r IV RV IV −RV π

r 1.00 -0.52 -0.42 -0.10 -0.11
IV – 1.00 0.70 0.34 -0.18
RV – – 1.00 -0.43 -0.46

IV −RV – – – 1.00 0.38
π – – – – 1.00
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Table 2: Predictive Regressions

Table 2 presents predictive regressions based on quarterly data from the first quarter of
1990 to the third quarter of 2016. The parameters related to the predictive regression using
VRP as a predictor are estimated from the following restricted VAR:[
V RPt+1

rt+1 − rf

]
=

[
Const
α

]
+

[
φ 0
β 0

] [
V RPt
rt − rf

]
+

[
εt+1

zt+1

]
Newey-West t-statistics are reported in parentheses (α is set to zero).

1990Q1 –2016Q3 V RP
Constant 0.0058 (6.72)

α 0.0
β 3.6 (4.48)
φ -0.18 (-1.84)
ρz,ε -0.04
σε 0.0074
σz 0.0746
σr 0.079

Adj. R2 (%) 15
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Table 3: Sensitivity of Household Consumption Growth to VRP Across Horizons

Table 3 presents the sensitivity of different moments of stockholder and non-stockholder
consumption growth to the variance risk premium (VRP) over horizons of S = 1, 2, 12, and
24 quarters. Panel A reports the sensitivity of mean consumption growth, while Panels B, C
and D report the results for Standard Deviation, Skewness and Kurtosis, respectively. The
sensitivity is computed as the regression coefficient from regressing a group’s consumption
growth over horizon S on current VRP. Below each entry we include the t-stat. Standard
errors are computed using a Newey-West estimator that allows for autocorrelation of up to
S − 1 lags when S > 1.

Panel A: Mean consumption Growth
S 1 2 12 24

Stockholders 1.15 0.58 -0.24 0.90
(t-stat) (1.59) (0.98) (0.29) (0.99)

Non-Stockholders 0.43 0.19 0.50 0.88
(t-stat) (1.34) (0.50) (0.86) (1.57)

Panel B: Std. Dev. Panel C: Skewness Panel D: Kurtosis
S 1 2 1 2 1 2

Stockholders 0.39 -0.89 0.96 3.39 -8.37 14.08
(t-stat) (0.85) (1.78) (0.31) (0.64) (1.21) (0.93)

Non-Stockholders 0.18 0.04 2.81 2.27 -4.73 -4.90
(t-stat) (0.58) (0.18) (1.60) (0.91) (1.03) (1.08)
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Table 4: TDF with constant age effects across risk aversion parameters

Table 4 presents the regression of simulated portfolios on age and factor realizations across
different relative risk aversion coefficients (2, 5, 10).

V RP i.i.d. γ = 2 γ = 10
Constant 0.51 1.06 0.46 0.26

Age −0.00191 −0.00308 −0.000312 −0.00128
Factor 45.6 45.1 43.0
R2 74% 45% 58% 73%
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Table 5: Age regressions conditional on factor realizations

Table 5 presents the regression of simulated portfolios on age conditional on each factor
realization, that is, age coefficients are different across factors. The experiments are shown
for different relative risk aversion coefficients (2, 5, 10).

Panel A (γ = 5)
V RP i.i.d.

Factor 2 s.d. above mean Mean 2 s.d. below mean
Constant 1.00 1.06 0.0 1.06

Age 0.00 −0.0046 0.0 −0.00308
R2 0% 79% 0% 45%

Panel B (γ = 2)
V RP i.i.d.

Factor 2 s.d. above mean Mean 2 s.d. below mean
Constant 0.96 0.96 0.0 0.89

Age 0.0003 0.0002 0.0 0.0008
R2 3% 1% 0% 7%

Panel C (γ = 10)
V RP i.i.d.

Factor 2 s.d. above mean Mean 2 s.d. below mean
Constant 1.0 0.43 0.0 0.45

Age 0.0 −0.002 0.0 −0.002
R2 0% 41% 0% 39%

Table 6: TTDF conditioning on Factor (TTDF2)

Table 6 presents results from comparing the TTDF2 with the standard TDF for different
relative risk aversion coefficients and additional transaction costs from trading the TTDF2.
In the standard TDF the portfolio allocation rule is a linear function of age only. Under
the TTDF2 the portfolio allocation also depends on the variance risk premium (VRP), by
considering different linear functions of the age for each realization of the VRP. The results
are reported in percentages.

γ 2 5 10
tc (inc.) 0.00 0.10 0.25 0.00 0.10 0.25 0.00 0.10 0.25

W65 (% inc.) 201 172 134 260 234 198 377 358 331
Std(W65) (% inc.) 289 254 205 363 336 297 570 561 546
Age-65 CE Gain 37.8 31.6 23.5 55.3 48.2 38.6 95.0 88.4 78.9
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Table 7: TDF with factor as regressor (TTDF)

Table 7 presents results from comparing the TTDF with the standard TDF for different
relative risk aversion coefficients and additional transaction costs from trading the TTDF.
In the standard TDF the portfolio allocation rule is a linear function of age only. Under the
TTDF the portfolio allocation also depends on the variance risk premium (VRP), which en-
ters as an additional variable in the linear regression. The results are reported in percentages.

γ 2 5 10
tc (inc.) 0.00 0.10 0.25 0.00 0.10 0.25 0.00 0.10 0.25

W65 (% inc.) 103 83 57 182 161 131 312 293 265
Std(W65) (% inc.) 97 77 50 248 223 187 506 491 466
Age-65 CE Gain 20.3 15.9 10.1 40.5 34.4 26.2 80.3 73.7 64.4

Table 8: Results with turnover restrictions

Table 8 presents results from comparing the TTDF with the standard TDF for different
rebalancing restrictions and transaction costs. In the standard TDF the portfolio allocation
rule is a linear function of age only. Under the TTDF the portfolio allocation also depends
on the variance risk premium (VRP), which enters as an additional variable in the linear
regression. The results are reported in percentages.

Risk Aversion 2 5 10
Max Rebalancing 25 25 15 15 25 25 15 15 25 25 15 15
Mean Turnover 108 108 72 72 106 106 69 69 100 100 66 66

tc (inc.) 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10
W65 (% inc.) 23 10 0.6 −11 45 32 14 3.4 141 128 94 83

Sd(W65) (% inc.) −2 −14 −27 −36 48 33 5 −5.5 275 255 190 173
Age-65 CE Gain 4.9 1.8 0.24 −2.5 11.1 7.2 3.7 0.35 38.5 34.0 26.2 22.3

Table 9: Results with less-tight short selling constraints

Table 9 presents results from comparing the TTDF with the standard TDF when both
funds are allowed to invest up to 200% in the risky asset. Results are show for different
rebalancing restrictions and transaction costs. In the standard TDF the portfolio allocation
rule is a linear function of age only. Under the TTDF the portfolio allocation also depends
on the variance risk premium (VRP), which enters as an additional variable in the linear
regression. These results are for the case of the investor with risk aversion of 5 (for both
funds). The results are reported in percentages.

Maximum Rebalancing 100 25 15
Average Turnover 360 360 360 114 114 116 73 73 74

tc (inc.) 0.00 0.10 0.25 0.00 0.10 0.25 0.00 0.10 0.25
W65 (% inc.) 572 523 452 65 44 16 24 7 −15

Std(W65) (% inc.) 615 599 569 108 82 49 41 21 −2.5
Age-65 CE Gain 91.8 81.5 67.3 13.5 8.1 1.1 5.2 0.6 −5.0
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Table 10: Results for exploiting predictability both during working life and retirement

Table 10 presents summary statistics comparing results between the VRP model and the
i.i.d. model for the baseline model for different rebalancing restrictions and transaction
costs. The portfolio allocations of both the iid and the VRP investors are given by the
corresponding funds both during working life, TDF and TTDF respectively, and during
retirement. The asset allocations of the retirement funds are constructed following the same
procedure as for the pre-retirement funds. Percentage changes reported.

Maximum Rebalancing 25 15
Average Turnover 108 108 69 69

tc (inc.) 0.00 0.10 0.00 0.10
W65 (% inc.) 63 41 34 13

Std(W65) (% inc.) 107 71 55 22
Age-65 CE Gain 30.0 21.6 20.1 12.3
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Figure 1: Implied volatility (IV), realized volatility (RV) constructed from daily US CRSP returns 

stock market data and the variance risk premium (VRP) as the difference between the two 

series. All data are quarterly between 1990 and 2016. 
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Figure 2 shows over the working part of the life cycle the share of wealth in stocks when the factor 

is at its median factor realization (factor = 0.49%) in the VRP model, the mean share of wealth in 

stocks in the VRP model and the mean share of wealth in stocks in the i.i.d. model. The baseline 

preferences are Epstein-Zin with a risk aversion of 5 and an elasticity of substitution equal to 0.5 

and a quarterly discount factor equal to 0.99. VRP is the variance risk premium model and the 

decision frequency is quarterly. 

 

Figure 3 shows the expected portfolio return between the VRP model and i.i.d. model and their 

difference. The baseline preferences are Epstein-Zin with a risk aversion of 5 and an elasticity of 

substitution equal to 0.5 and a quarterly discount factor equal to 0.99. VRP is the variance risk 

premium model and the decision frequency is quarterly. 
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Figure 4 shows the mean share of wealth in stocks for the VRP and i.i.d. models and the target 

date funds (TDFs) that are constructed based on simulated shares of wealth in stocks and a 

multivariate regression on age and factor. In the i.i.d. model the factor state is irrelevant (as it 

should be). The data generating process (DGP) for stock returns in the simulation is the VRP for 

either model. The baseline preferences are Epstein-Zin with a risk aversion of 5 and an elasticity 

of substitution equal to 0.5 and a quarterly discount factor equal to 0.99. VRP is the variance risk 

premium model and the decision frequency is quarterly. 
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Figure 5 shows the share of wealth in stocks for the target date funds (TDFs) based on different 

factor realizations and the mean share of wealth in stocks for the VRP model. The data generating 

process (DGP) for stock returns in the simulation generating the simulated shares of wealth on 

which the TDF regressions are based is the VRP baseline model. The baseline preferences are 

Epstein-Zin with a risk aversion of 5 and an elasticity of substitution equal to 0.5 and a quarterly 

discount factor equal to 0.99. VRP is the variance risk premium model and the decision frequency 

is quarterly. 
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