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1. Introduction

Financial intermediaries play a crucial role in supporting the functioning of financial markets.
This is especially true for over-the-counter (OTC) markets, which are not organised based
on centralised exchanges but rely on the intermediation by dealers providing immediacy to
their clients.1 However, dealers’ willingness to provide liquidity depends on their ability to
make balance sheet space available. Thus, constraints on dealers’ intermediation capacity can
reduce dealers’ incentives to intermediate trades, increasing the cost of liquidity provision, as
well as generating widespread violations of no-arbitrage conditions.2

Against this backdrop, the key question that we address in this paper is how dealer con-
straints affect liquidity provision: do constrained dealers increase the cost of market liquidity,
or do they even down-scale their market-making activity? To analyse this question, we study
prices and quantities in the foreign exchange (FX) market based on a globally representative
trade data set from CLS Group. The FX market is the largest financial market in the world by
turnover and often regarded as one of the most liquid ones. Given that many dealer banks
that are active in FX also provide intermediation services across a host of financial markets,
we expect that our findings about the key mechanisms also apply to other OTC markets.

How intermediation constraints impact market liquidity is an important issue for both
policy makers and academics. In fact, it has been much debated whether the policies put in
place since the Global Financial Crisis in 2008/09 have had any (unintended) consequence on
the functioning of OTC markets by disincentivising liquidity provision (e.g., Dudley, 2018).
On top of the regulatory costs, the academic literature seeks to understand the factors in-
fluencing dealers’ willingness to use their balance sheets for intermediation. Moreover, the
monitoring of how liquidity costs fluctuate and are affected by dealer behavior is also benefi-
cial for practitioners as well as central banks operating in such markets.

The contribution of this paper is threefold. First, we provide a simple, yet effective, analyt-
ical framework to tease out the costs of providing FX spot market liquidity from a no-arbitrage
condition. The framework builds on the well-known triangular relation among FX rates (e.g.,
Chaboud, Chiquoine, Hjalmarsson, and Vega, 2014; Foucault, Kozhan, and Tham, 2016) and
outlines two measures of liquidity costs that both depend on FX dealers’ intermediation ca-
pacity. VLOOP, which stands for violation of the law of one price, is the deviation of the mid-
quotes from the triangular relation. It captures the shadow cost of intermediary constraints
and arises when dealers’ marginal valuation of a currency pair deviates from its fundamental
value. TCOST is the round-trip transaction cost of performing a triangular arbitrage trade.
It represents the dealer’s realised compensation to endure inventory risks due to clients’ or-
der flow imbalances. Our second contribution is to study VLOOP and TCOST through the

1To be clear, we focus on the role of FX dealer banks as liquidity providers rather than cross-market arbi-
trageurs. This is consistent with the role that these institutions have played after the clampdown on proprietary
trading in the aftermath of the Global Financial Crisis.

2See “Holistic Review of the March Market Turmoil,” Financial Stability Board, November 2020.
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lenses of constrained financial intermediaries. In particular, we document a novel nonlinear
relation between the cost of liquidity provision and dealer-intermediated volume. We show
that dealers’ liquidity provision deteriorates along two dimensions when they face intermedi-
ation constraints: i) their provided market liquidity becomes increasingly more costly, and ii)
dealers’ liquidity supply becomes less elastic relative to states when they are unconstrained.
Lastly, we provide a tractable model that formalises the economic intuition for these novel
empirical findings.

Our paper consists of three parts. We start by proposing a novel analytical approach for
measuring the cost of liquidity provision. The conceptual underpinning is a no-arbitrage rela-
tion that ties together triplets of FX spot rates. We show that deviations from this no-arbitrage
condition represent an amalgam of two liquidity cost components: VLOOP and TCOST. In
line with the literature on intermediary asset pricing (e.g., Adrian, Etula, and Muir, 2014;
Duffie, 2018; Fleckenstein and Longstaff, 2018; Du, Hébert, and Huber, forthcoming 2022), a
natural interpretation of VLOOP is the shadow cost of intermediary constraints.3 By contrast,
TCOST captures dealers’ demanded compensation for enduring inventory imbalances. Using
FX spot transaction data from CLS Group, we document three new empirical results. First,
both liquidity cost measures clearly matter from an economic standpoint and, as expected,
VLOOP is an order of magnitude smaller than TCOST. Second, the two liquidity cost com-
ponents move in tandem over time, albeit their correlation is less than 30% on average. This
is consistent with the idea that both are affected by dealers’ intermediation capacity, but in
different ways. Third, both components, but especially TCOST, tend to rise as intermediated
volumes increase. This correlation pattern is in line with the idea that dealers require a higher
compensation when providing more immediacy to clients.

In the second part of the paper, we link the cost of liquidity provision to dealers’ con-
straints. The key mechanism is that constrained dealers are less inclined to make balance
sheet space available to clients who wish to trade currency positions that create persistent
inventory imbalances. We empirically investigate two different types of dealer behaviour:
First, dealers can pass their intermediation costs onto clients by charging higher prices for
immediacy. As such, this will be reflected in our two measures of liquidity costs, which both
increase as intermediated volumes rise. Second, dealers are less inclined to maintain large
and unbalanced inventories for market making purposes when their intermediation capacity
is lower. The higher trading costs charged by dealers in turn also disincentivise potential
liquidity traders from trading and thereby mitigating the imbalance. What this boils down
to is that dealer constraints can have a bearing on both the cost and quantity of FX liquidity
provision. In particular, tightening dealer constraints increase the cost of providing liquidity,
which in turn renders dealers’ liquidity provision less elastic.

In principle, the mechanism of interest could be studied based on any no-arbitrage con-

3In line with this strand of literature, one may also refer to these shadow costs as “balance sheet costs”
associated with FX spot liquidity provision.
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dition (e.g., put-call parity, treasury cash bonds vs futures, etc.). However, the triangular FX
no-arbitrage condition offers at least two main advantages: First, it provides us with a clean
laboratory to measure the cost of liquidity provision in the FX spot market. This is because
unlike other no-arbitrage conditions that embed various frictions4 (e.g., counterparty risk,
funding roll-over risk, etc.) the triangular no-arbitrage condition captures the shadow cost
of constraints on intermediation activities that are nearly risk-free (i.e., FX spot) and which
can be financed by deploying existing balance sheet cash or short-term funding (Andersen,
Duffie, and Song, 2019). Second, it allows us to dissect two liquidity cost components (i.e.,
VLOOP and TCOST) and to attribute them an economic meaningful interpretation. Using
our unique FX spot volume data set, we are able to thoroughly quantify these two cost com-
ponents. Moreover, FX no-arbitrage conditions that involve forward contracts (e.g., covered
interest parity) are less accurate measures of the shadow cost of intermediary constraints in
FX spot trading compared to VLOOP. This is because these other arbitrages are also driven
by constraints that arise from liquidity provision in FX swap and money markets (Rime,
Schrimpf, and Syrstad, 2021).

For our empirical analysis, we construct a composite measure capturing both regulatory
and market risk constraints faced by FX dealer banks. Specifically, we consider the following
variables: i) FX Value-at-Risk, ii) He, Kelly, and Manela (2017) leverage ratio, iii) credit default
swap (CDS) premium, and iv) funding costs that are particularly relevant for debt-financed
positions and market-making functions (see, e.g., Andersen et al., 2019; Berndt, Duffie, and
Zhu, 2020). Our time-varying “dealer constraint measure” DCM is defined as the first princi-
pal component of these four variables for the largest 10 FX dealer banks. To rule out reverse
causality, DCM enters all our regressions with a lag of 1 day (and our results are robust to
using more lags). From an institutional perceptive, the relation between the cost of liquid-
ity provision (i.e., VLOOP and TCOST) and dealer-intermediated volume is unlikely to have
any effect on DCM. This is because FX spot trading itself does not affect dealer leverage or
funding costs, not least given substantial internalisation of trades and netting.5

Equipped with a comprehensive measure of dealers’ constraints, we analyse the relation
between our two measures of liquidity costs and dealer-intermediated volumes. Two main
results emerge concerning liquidity costs and volumes. First, as expected, the cost of liquidity
provision increases significantly with dealers’ constraints. Second, we find that the quantity of
supplied liquidity crucially depends on dealers’ intermediation constraints. More specifically,
our analysis highlights how the “elasticity of liquidity provision” (i.e., the correlation between
liquidity costs and volumes) decreases as dealers become more constrained.

To establish our main results, we rely on logistic smooth transition regression (LSTAR)

4For instance, Siriwardane, Sunderam, and Wallen (2021) show that the low correlation in the violation of seven
no-arbitrage conditions (excluding the FX triangular no-arbitrage condition) is attributable to various frictions
driving both the segmentation of balance sheets and also the funding abilities of financial firms.

5Moore, Schrimpf, and Sushko (2016) document that some of the major FX dealer banks have internalisation
ratios of up to 90%. Moreover, CLS claims that multilateral netting shrinks funding needs by over 96%.
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methods (e.g., Christiansen, Ranaldo, and Söderlind, 2011; Jeanneret, 2019) that are particu-
larly well-suited to capture correlations across different regimes. The main goal of the regime-
dependent analysis is to investigate how the relation between dealer-provided volume and
liquidity costs changes across two regimes: i) normal times when dealers are unconstrained
and ii) stressed periods when they face constraints to their intermediation capacity. While
in the normal regime dealer-intermediated volume and our liquidity cost measures co-move
with an average correlation of 12–31%, this correlation falls off sharply in the regime when
dealers are constrained.6 In particular, the correlation between the two liquidity costs (i.e.,
VLOOP and TCOST) and intermediated volume decreases by 14–15 percentage points in con-
strained periods. We interpret this result as a drop in dealers’ elasticity to provide liquidity.
All our findings remain qualitatively unchanged when considering each determinant of the
dealer constraint measure DCM as a single regime variable.

In the third part of the paper, we build on inventory management models (see, e.g., Gross-
man and Miller, 1988; Hendershott and Menkveld, 2014) to rationalise our empirical findings.
Our model features two periods, three currency pairs, and two types of agents: i) a risk-averse
and debt-financed dealer supplying liquidity and ii) liquidity traders with exogenous trading
demands. In particular, heterogeneity in private values among liquidity traders results in
demand imbalances across the three pairs (Gabaix and Maggiori, 2015). Such imbalances in
turn weigh on the dealer’s marginal valuation of the three pairs due to the implied “balance
sheet costs.” These costs incentivise the dealer to set mid-quotes away from their fundamen-
tal value and result in violations of the law of one price (i.e., VLOOP). Thus, VLOOP reflects
the shadow cost of the dealer’s constraints in FX spot trading.7 Within this context, TCOST
is the demanded compensation of the dealer to accommodate customer flows that engender
inventory risk. In normal times, when the dealer is unconstrained, the shadow cost of in-
termediary constraints (i.e., VLOOP) and also transaction costs (i.e., TCOST) are small. Both
liquidity cost measures increase as dealer-intermediated volume rises since a larger trading
demand implies that the dealer needs to endure larger inventory risk. But, at times when
the dealer is constrained liquidity costs increase disproportionately more compared to equi-
librium volume. This is because it is optimal for the constrained dealer to i) set mid-quotes
further away from the fundamental value (i.e., higher VLOOP) as well as ii) charge a higher
bid-ask spread (i.e., higher TCOST) to clients. Taken together, the increase in both liquidity
cost measures leads to a slower increase in equilibrium trading volume and hence, renders
liquidity provision to be less elastic.

6The key focus of our analysis lies on the supply side of liquidity provision that we capture via our dealer
constraint measure DCM. In the robustness section of the paper, we also use a structural vector autoregression
with sign restrictions to disentangle liquidity demand and supply dynamics. The setup here closely follows
Goldberg (2020) and Goldberg and Nozawa (2020), respectively.

7For most market participants it will, however, not be feasible to benefit from such deviations due to high
transaction costs (i.e., TCOST) as well as FX quantity conventions on major trading platforms. For instance, on
inter-bank trading platforms such as EBS or Reuters, only trade sizes exceeding one million of the base currency
will be accepted. This can lead to potential slack when performing triangular arbitrage trades.
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2. Related literature

Our paper contributes to three strands of literature. First, our work is related to the broader
literature that emphasises the role of intermediary frictions in affecting asset prices and, in
particular, risk premia (e.g., Gârleanu and Pedersen, 2011; He and Krishnamurthy, 2011, 2013;
Adrian and Boyarchenko, 2012; Adrian et al., 2014; He et al., 2017). Our main contribution is
to show in depth how constrained dealers curtail their liquidity provision and charge higher
liquidity costs in times of markets stress. This finding is also consistent with the evidence in
Nagel (2012) showing that market makers’ liquidity supply is increasing in their intermedi-
ation capacity and decreasing in the level of risk. Moreover, our paper corroborates the idea
that market-wide liquidity conditions depend on intermediaries’ balance sheet capacity (e.g.,
Adrian and Shin, 2010; Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes, 2010)
and that intermediary leverage and banks’ risk management practices (e.g., following Value-
at-Risk methodologies) tend to be pro-cyclical (Adrian and Shin, 2013). Lastly, our findings
suggesting that the cost of dealers’ balance sheet space affects both the cost and quantity of
liquidity provision are consistent with slow-moving intermediated capital being a key factor
contributing to distortions in asset pricing relations (Duffie, 2010).

Second, we add to the literature on limits to arbitrage. Our work differs from previous
research along two important dimensions. First, while prior research has mostly focused on
constrained arbitrageurs (e.g., Shleifer and Vishny, 1997; Gromb and Vayanos, 2002; Hombert
and Thesmar, 2014) and more recently Du et al. (forthcoming 2022) and Siriwardane et al.
(2021), we study the role of constrained dealers and how their ability to provide immediacy
contributes to market liquidity. Second, we propose a well-known no-arbitrage identity to
derive two liquidity cost components with an economically meaningful interpretation. Thus,
our key contribution is to analyse arbitrage conditions to shed light on the relation between
liquidity costs and trading volume and to show how this relation critically depends on the
intermediation capacity of dealers. In addition, a large body of prior research has studied
limits to arbitrage in equity markets (see Gromb and Vayanos, 2010). However, many of the
frictions considered in that literature, such as short sale constraints which are considered
a major explanation in equities (e.g., Chu, Hirshleifer, and Ma, 2020), do not apply to FX.
Related to the stock market literature, recent studies document widespread mispricings in
stressful conditions (Pasquariello, 2014), commonality in arbitrage deviations (Rösch, Sub-
rahmanyam, and van Dijk, 2016), and limits to arbitrage impacting market liquidity (Rösch,
2021). We add to this branch of the literature by identifying constrained intermediaries as the
main driving force behind such commonalities and by showing how their liquidity provision
impacts aggregate trading volume.

Lastly, we contribute to the literature on FX microstructure on understanding the role
of trading volume. Our key angle here is to study the relation of both quantities (i.e., vol-
umes from CLS Group) and prices. In contrast to the order flow literature (e.g., Evans, 2002;
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Evans and Lyons, 2002, 2005), the literature on trading volume is relatively scarce due to
the lack of comprehensive data. Earlier research has focused largely on the inter-dealer seg-
ment, which is dominated by two platforms: Reuters (e.g., Evans, 2002; Payne, 2003; Foucault
et al., 2016) and EBS (e.g., Chaboud, Chernenko, and Wright, 2008; Mancini, Ranaldo, and
Wrampelmeyer, 2013; Chaboud et al., 2014). Other sources of FX spot volume are proprietary
data sets from specific dealer banks (e.g., Bjønnes and Rime, 2005; Menkhoff, Sarno, Schmel-
ing, and Schrimpf, 2016). The recent public access to CLS data has enabled researchers to
study customer-dealer volume at a global scale (Hasbrouck and Levich, 2018, 2021; Ranaldo
and Santucci de Magistris, forthcoming 2022; Cespa, Gargano, Riddiough, and Sarno, 2021;
Ranaldo and Somogyi, 2021). We contribute to this strand of literature by investigating the
impact of dealer constraints on both the cost and quantity dimension of global FX liquidity.

3. Measuring the cost of liquidity provision in FX markets

3.1. Data sources

The empirical analysis employs high-frequency trade and quote data from two main sources.
The FX spot volume data come directly from CLS Group (CLS) and are sampled hourly. Note
that the dataset excludes any trades between two market makers or two price takers and
hence only includes trading activity that is intermediated by FX dealer banks. This data set is
publicly available from CLS or via Quandl.com, a financial and economic data provider.8 CLS
data have been used in prior research, among others, by Hasbrouck and Levich (2018, 2021),
Ranaldo and Santucci de Magistris (forthcoming 2022), Cespa et al. (2021), and Ranaldo and
Somogyi (2021). These authors have comprehensively described the CLS volume data.

The full sample period spans from November 2011 to September 2020 and includes data
for 18 major currencies and 33 currency pairs. Our goal is to construct measures capturing
the cost of dealers’ liquidity provision. We derive these measures from the classical triangular
no-arbitrage relation involving one non-dollar currency pair (e.g., AUDJPY) and two dollar
legs (i.e., USDAUD and USDJPY). Hence, we exclude the USDHKD, USDILS, USDKRW,
USDMXP, USDSGD, and USDZAR from our sample because there are no further non-dollar
currency pairs involving the respective quote currencies (i.e., HKD, ILS, KRW, MXP, SGD, and
ZAR). Furthermore, to maintain a balanced panel, we also remove all currency pairs involving
the Hungarian forint (HUF), which enters the data set later, on 7 November 2015.9 The
remaining 25 currency pairs cover at least 75% of global FX spot trading volume according to

8CLS operates the world’s largest payment-vs-payment settlement system handling up to 50% of global FX
volumes. At settlement, CLS mitigates principal and operational risk by settling both sides of the trade at once.

9This filtering leaves us 15 non-dollar currency pairs (i.e., AUDJPY, AUDNZD, CADJPY, EURAUD, EURCAD,
EURCHF, EURDKK, EURGBP, EURJPY, EURNOK, EURSEK, GBPAUD, GBPCAD, GBPCHF, and GBPJPY) and 10
dollar pairs (i.e., USDAUD, USDCAD, USDCHF, USDDKK, USDEUR, USDGBP, USDJPY, USDNOK, USDNZD,
and USDSEK) that are used to synthetically replicate each of the non-dollar pairs.
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the Bank for International Settlements (see “Triennial central bank survey — global foreign
exchange market turnover in 2019,” September 2019).

Next, we pair the hourly FX volume data with intraday spot bid and ask quotes from
Olsen, a well-known provider of high-frequency data. Olsen compiles historical tick-by-
tick data from various electronic trading platforms, both from the inter-dealer and dealer-
customer segments. The indicative bid and ask quotes are directly available for all 25 currency
pairs but do not correspond to actually executable transaction prices. This is not an issue for
our purposes for two reasons: First, we are interested in measuring the cost of liquidity provi-
sion rather than identifying actual triangular arbitrage opportunities. Second, on average, the
correlation of Olsen indicative quotes with tradeable EBS best bid and offer prices is around
99% and the mean absolute error is roughly 3.3%.10

3.2. Key variables

We measure the cost of liquidity provision in the FX spot market along two dimensions: i)
violations of the law of one price (VLOOP), and ii) round-trip transaction costs (TCOST). In
a first step, we explain how we derive the two components and, in a second step, elaborate
how they relate to the costs that dealers face when providing FX spot liquidity.

Conceptually, VLOOP captures the price dislocations for two assets or trading positions
with the same intrinsic value, while TCOST refers to the round-trip trading costs to take
advantage of the dislocations. We derive both measures from the well-known triangular
arbitrage trade that takes advantage of three FX rates (e.g., Chaboud et al., 2014; Foucault
et al., 2016). The VLOOP component of the triangular arbitrage trade can be computed with
midquote prices reflecting the intrinsic values of the direct and indirect positions. TCOST in
turn is computed from the bid and ask quotes (depending on the base and quote currency).

Deriving VLOOP and TCOST from the triangular no-arbitrage relation. To derive VLOOP,
consider a trader exchanging one euro (EUR) to some amount of US dollar (USD), exchanging
the amount of US dollar to some amount of Canadian dollar (CAD) and exchanging back the
amount of Canadian dollar to euro instantaneously at time t. The final amount of such a
round-trip transaction measured in euro is given as:

∆t ≡
3

∏
i=1

Pi,t, (1)

where P1,t =
1

USDEURmid
t

, P2,t = USDCADmid
t , and P3,t =

1
EURCADmid

t
denote midquote exchange

rates expressed as the amount of quote currency per unit of base currency, for instance, 1.255
Canadian dollar per US dollar (i.e., indirect quotation).

10To be precise, we estimate correlations and mean absolute errors individually for 25 currency pairs over the
full-year of 2016. For brevity, we relegate these results to the Online Appendix.
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The trader has identified a violation of the law of one price if ∆t is different from unity.
Note that ∆t may be positive or negative depending on the direction of the trade but will
be identical in absolute terms (if measured in logs) irrespective of the initial endowment of
the trader (i.e., CAD, EUR or USD). Clearly, an arbitrageur would take this into account
by choosing the direction of the triangular no-arbitrage trade, provided that corresponding
arbitrage profits can be reaped. Panel A in Figure 1 provides a schematic overview of how to
measure such deviations from triangular no-arbitrage conditions based on midquote prices.

To derive TCOST, we consider the same trader as before but now incorporate transaction
costs by accounting for bid-ask spreads. Specifically, for every transaction that a trader makes,
they pay the midquote price plus the half-spread. To reflect this, we replace the midquote
prices in Eq. (1) by bid and ask prices, that is, P1,t = 1

USDEURask
t

, P2,t = USDCADbid
t , and

P3,t = 1
EURCADask

t
, respectively. The superscripts ’bid’ and ’ask’ refer to the price at which

someone sells and buys one currency for another currency. Panel B in Figure 1 provides an
overview of such a triangular arbitrage trade including transactions costs. Note that the bid
and ask prices in this example are illustrative and do not correspond to actual data.

Figure 1: Triangular arbitrage trade

CAD

EUR USD

Δ𝑡 =
1.255

0.820 ⋅ 1.505
= 1.017 𝐸𝑈𝑅

𝟎. 𝟖𝟐𝟎𝑴𝑰𝑫

Panel A

CAD

EUR USD

Δ𝑡 =
1.25

0.83 ⋅ 1.52
= 0.991 𝐸𝑈𝑅

0.81𝐵𝐼𝐷|𝟎. 𝟖𝟑𝑨𝑺𝑲

Panel B

Note: This figure provides a schematic overview of a triangular arbitrage trade prior (Panel A) and after transac-
tion costs (Panel B). The arrows denote the direction of the trade. Panel A shows the prior transaction cost return
of a trader starting with one euro, first exchanging it to 1

0.820 = 1.220 US dollars, then exchanging 1.220 US dollars
to Canadian dollars at the midquote price of 1.255 Canadian dollars per US dollar. This yields 1.531 Canadian
dollars that are exchanged back to euros at the CADEUR midquote that is equivalent to 1

EURCADMID = 1
1.505 .

Such a round trip yields 1.017 euros or equivalent a positive return of 1.7% in this example. Panel B shows the
return of first exchanging one euro to 1

0.83 = 1.21 US dollars at the ask price, then exchanging 1.21 US dollars to
Canadian dollars at the bid price of 1.25 Canadian dollars per US dollar. This yields 1.51 Canadian dollars that
are exchanged back to euros at the CADEUR bid price that is equivalent to 1

EURCADASK = 1
1.52 . Such a round trip

yields 0.991 euros or equivalently a negative return of −0.9%.

The last step in the derivation of the two liquidity cost metrics consists of taking the log
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on both sides of Eq. (1), and leveraging the fact that bid and ask prices are the midquote
minus and plus half the bid-ask spread. This yields the following expression:

log(∆t) ≡ log

(
USDCADmid

t

USDEURmid
t · EURCADmid

t

)
︸ ︷︷ ︸

VLOOPt

− log

((
1 + USDEURbas

t
2

)
·
(
1 + EURCADbas

t
2

)
1 − USDCADbas

t
2

)
︸ ︷︷ ︸

TCOSTt

, (2)

where the superscripts ’mid’ and ’bas’ denote the midquote price (i.e., the average of the
bid and ask price) and relative bid-ask spread (i.e., the difference between ask and bid price
relative to the midquote). Note that in this expression TCOSTt is by definition positive.

The first part of Eq. (2) (i.e., VLOOPt) captures the violations from the law of one price.
Following the literature on intermediary asset pricing (e.g., Adrian et al., 2014; Duffie, 2018),
we interpret these no-arbitrage violations as a measure of the lower bound of the shadow cost
of intermediary constraints.11 The second part (i.e., TCOSTt) reflects the cumulative round-
trip transaction cost of performing such a triangular arbitrage trade. These transaction costs
represent the dealer’s compensation to endure an inventory imbalance due to the customers’
demand for immediacy.

Following our methodology, we compute VLOOPt and TCOSTt for k = 1, 2, ..., 15 triplets
of currency pairs. A triplet of currency pairs is defined as one non-dollar currency pair (e.g.,
EURCAD) plus the two USD legs (e.g., USDEUR and USDCAD).12 In particular, at every point
in time we take the perspective of the arbitrageur above by first, identifying the seemingly
profitable direction of the trade by conditioning on VLOOPt being positive and second, by
extracting the associated transaction cost TCOSTt. Moreover, we prune the hourly time-series
of VLOOPt and TCOSTt, respectively, for heavy outliers, which we define as observations
in the top and bottom 1.5 percentiles of the data. Eventually, we can also compute daily
measures of VLOOPt and TCOSTt by summing up hourly observations for each day.

Empirical illustrations. Figure 2 shows the time-series and cross-sectional variation of hourly
no-arbitrage violations VLOOPt (left y-axis) and round-trip transaction costs TCOSTt (right y-
axis), respectively. Economically, a higher reading of VLOOPt coincides with a larger shadow
cost of intermediary constraints, whereas TCOSTt captures the realised compensations for
providing immediacy. Both measures of dealers’ liquidity costs exhibit intuitive properties
in the sense that they surge during periods of market stress and mean-revert during calm

11Dávila, Graves, and Parlatore (2022) show that these no-arbitrage violations correspond to the marginal social
value of executing an arbitrage trade and that the welfare gain of closing arbitrage spreads is higher in more
liquid markets such as FX spot.

12As a robustness check, we have also constructed triplets of euro-based currency pairs that do not involve
any dollar currency pairs (e.g., AUD-EUR-JPY). This leaves us with 6 currency pair triplets: AUD-EUR-JPY,
CAD-EUR-JPY, GBP-EUR-AUD, GBP-EUR-CAD, GBP-EUR-CHF, and GBP-EUR-JPY, respectively. All our key
empirical results remain qualitatively unchanged when estimated based on this alternative cross-section of cur-
rency pair triplets. See the Online Appendix for these additional findings.
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periods. The large spike during the Covid-19 market turmoil in March and April 2020 is
particularly well pronounced across all 15 triplets of currency pairs and is indicative of the
global nature of the stress. The correlation of VLOOPt and TCOSTt is positive for the en-
tire cross-section and ranges from 12–39%. We interpret this as evidence of commonality in
no-arbitrage violations and market liquidity in the broader sense (Rösch, 2021).

Figure 2: No-arbitrage violations and round-trip transaction costs
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Note: This figure plots the 22-day moving averages of hourly triangular no-arbitrage deviations VLOOPt (left
y-axis) and round-trip trading costs TCOSTt (right y-axis), respectively, for 15 triplets of currency pairs. Both
variables are measured in basis points. The numbers in the titles refer to the correlation coefficient of VLOOPt

and TCOSTt. The sample covers the period from 1 November 2011 to 30 September 2020.

Table 1 reports the time-series average of hourly no-arbitrage deviations VLOOP and
round-trip trading costs TCOST. In addition, it also tabulates hourly averages of direct trading
volume in non-dollar currency pairs (e.g., AUDJPY) and synthetic trading volume in dollar
pairs. By “synthetic” we refer to the sum of trading volume in two dollar pairs (e.g., USDAUD
and USDJPY) within a triplet of currency pairs. Each row corresponds to one currency pair
triplet, which we abbreviate as, for instance, AUD-USD-JPY.
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This simple summary statistics table conveys three main insights: First, deviations from
fundamentals VLOOP are an order of magnitude smaller than round-trip transaction costs
TCOST. We interpret this result as suggestive evidence that dealers recharge their intermedi-
ation costs on the bid and ask prices offered to their customers. Another implication is that
seemingly profitable violations of triangular no-arbitrage are most of the time not exploitable
by the average trader as transactions costs are prohibitively high (i.e., there is no free lunch).
Second, trading volume in non-dollar currency pairs is considerably smaller relative to the
synthetic volume in dollar pairs. This is essentially the case for all 15 currency pair triplets but
the effect is less pronounced for those involving the NOK and SEK, where the euro crosses
play a bigger role. Lastly, the synthetic relative bid-ask spread is somewhat larger than the
direct spread in non-dollar currency pairs. This finding is fully consistent with Somogyi
(2021) showing that strategic complementarity in price impact rather than traditional trading
costs (e.g., bid-ask spreads) is the key determinant of the cross-sectional differences in trading
volume between dollar and non-dollar currency pairs.

Table 1: Summary statistics

Liquidity cost in bps Volume in $bn Bid-ask spread in bps Volatility in bps

VLOOP TCOST Direct Synthetic Direct Synthetic Direct

AUD-USD-JPY 0.24 4.88 0.18 5.11 4.15 5.87 14.38
AUD-USD-NZD 0.29 5.85 0.09 2.01 4.44 7.43 9.32
CAD-USD-JPY 0.30 4.67 0.03 5.32 4.29 5.21 12.66
EUR-USD-AUD 0.19 4.52 0.14 7.72 3.54 5.64 11.54
EUR-USD-CAD 0.28 4.25 0.08 7.94 3.55 4.99 10.15
EUR-USD-CHF 0.21 3.98 0.37 6.76 2.62 5.41 6.38
EUR-USD-DKK 0.14 3.89 0.09 6.17 2.54 5.30 1.82
EUR-USD-GBP 0.19 4.07 0.61 8.16 3.19 4.95 9.52
EUR-USD-JPY 0.21 3.90 0.65 9.67 3.14 4.83 11.43
EUR-USD-NOK 0.26 7.69 0.24 6.25 6.25 9.40 11.01
EUR-USD-SEK 0.23 6.86 0.27 6.27 5.41 8.42 9.18
GBP-USD-AUD 0.20 5.08 0.04 3.60 4.22 5.99 12.53
GBP-USD-CAD 0.29 4.69 0.03 3.81 4.00 5.34 10.85
GBP-USD-CHF 0.19 4.94 0.03 2.64 4.09 5.76 10.69
GBP-USD-JPY 0.19 4.47 0.20 5.55 3.85 5.18 12.78

Note: This table reports the time-series average of hourly triangular no-arbitrage deviations VLOOP in basis
points (bps), round-trip trading costs TCOST in bps, direct trading volume in non-dollar pairs (e.g., AUDJPY) in
$bn, synthetic volume in dollar pairs in $bn, direct and synthetic relative bid-ask spreads, and realised volatility
in non-dollar pairs in bps. By “synthetic” we refer to the sum of trading volumes and relative bid-ask spreads in
two dollar pairs (e.g., USDAUD and USDJPY) within a currency pair triplet. Each row corresponds to a triplet of
currency pairs, for example, AUDJPY, USDAUD, and USDJPY that we abbreviate as AUD-USD-JPY. The sample
covers the period from 1 November 2011 to 30 September 2020.

4. Elasticity of liquidity provision and dealer constraints

This section presents evidence consistent with our hypothesis that dealers’ liquidity provision
becomes increasingly inelastic at times of heightened intermediation constraints. The analy-
sis is split into two parts. We first start with some simple motivating evidence showing that
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the relationship between dealer-intermediated volumes and the cost of liquidity provision de-
pends on dealers’ intermediation constraints. We then draw on smooth transition regressions
to study the state-dependent nature of this relation more formally.

4.1. Motivating evidence

For motivational purposes, we first present some descriptive evidence of how trading vol-
ume and the costs of liquidity provision (i.e., VLOOP and TCOST) co-move over time. In a
second step, we then compute conditional correlations to show how the relation weakens as
intermediaries become more constrained.

To measure dealer banks’ intermediation constraints we derive a composite dealer con-
straint measure (DCM) that we compute in two steps. As a first step, we create four time-
series based on cross-sectional averages of the top 10 FX dealer banks’ (see Euromoney FX
surveys) i) FX Value-at-Risk (VaR) of their overall trading book (quarterly), ii) He et al. (2017)
leverage ratio (quarterly), iii) credit default swap (CDS) premia (daily) and iv) debt funding
costs (daily). Figure 3 shows the time-series variation of these four measures that exhibit
correlations ranging from 58–91% percent. See the Online Appendix for details on how we
retrieve and compute each of these variables.

All of these factors can have a bearing on financial intermediaries’ capacity to absorb cus-
tomer order flow imbalances on their balance sheet. For example, self-imposed or regulatory-
driven VaR-limits force dealers to scale back their market making or proprietary trading.
Similarly, dealers’ willingness to engage in market making activity and liquidity provision is
linked to their risk profile, as reflected, for instance, in higher leverage and CDS premia on
the bank’s outstanding debt. In addition, elevated risk exposure can lead to an immediate
increase in funding costs and valuation adjustments (XVA), which may manifest themselves
in debt and funding value adjustments by dealers (Andersen et al., 2019). These factors in
turn will affect dealers’ assessment of the financing costs for its franchise, and as such will
have a bearing on their intermediation activities.

Since large FX dealer banks (e.g., Citi Bank or UBS) typically operate on a global scale
and provide liquidity in many currencies and other asset classes at once, they are even more
exposed to these issues. As such, intermediaries might be forced to reduce liquidity pro-
vision in all currency pairs when they endure trading losses in particular positions and/or
experience funding constraints affecting the whole dealer franchise.

As a second step, we extract the first principal component as our composite measure of
dealer constraints. The first principal component explains around 83% of the total variance
of the individual dealer constraint time-series. The key advantage of our dealer constraint
measure DCM is that it encompasses a range of different factors that can all impact dealers’
risk appetite and ability to warehouse risk.13 By doing so, we are able to extract common

13One might wonder how much our results are driven by market-wide state factors that are not dealer specific.

12



Figure 3: State variables: Dealer constraint measure (DCM) and its components
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Note: This figure plots different state variables that we observe at the daily and quarterly frequency. Observations
have been standardised by subtracting the sample mean and dividing by the sample standard deviation of every
variable. The four state variables are primary FX dealer banks’ i) quarterly Value-at-Risk measure (VaR, dashed
black line), ii) quarterly He et al. (2017) leverage ratio (HKM, dashed grey line), iii) daily credit default spread
(CDS, solid black line), and iv) daily funding cost yield (DFC, solid grey line). We define our dealer constraint
measure (DCM, black solid line with grey markers) as the first principal component across these four variables.
The sample covers the period from 1 November 2011 to 30 September 2020.

information of all these factors and obtain a daily measure of economic constraints on global
dealers’ intermediation activity.14

A valid question is whether our dealer constraint measure may also be affected by the
amount of intermediated volume itself. There are at least two reasons why this is unlikely to
be the case: First, we use the 1-day lagged value of DCM in all our state-dependent regression
analyses to rule out any contemporaneous relation or reverse causality issues. Second, FX spot
intermediation activity only minimally affects dealer leverage since it is a direct exchange of
two currencies (i.e., an accounting exchange on the asset side). And similarly, FX spot trading
volume is unlikely to affect the dealers’ credit spread and overall funding costs.

Table 2 takes the descriptive analysis one step further by computing conditional correla-
tion coefficients of (log) changes in each of our two liquidity cost measures (i.e., VLOOP and
TCOST) and total dealer-intermediated trading volume (i.e., VLM) across the percentiles of

To prove robustness, we use the VIX index, TED spread, gold price, and the LIBOR-OIS spread. We find that
these state variables do not appropriately capture the state-dependent relation between liquidity costs and trading
volume. See the Online Appendix for output tables.

14Ideally, we would be able to measure dealer constraints intraday. Unfortunately, this is not feasible due to the
low frequency availability of VaRs, leverage ratios, CDS spreads, and debt funding costs at the bank level.
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our dealer constraint measure DCM.15 Consistent with our intuition, we find that the cor-
relation with each of the two liquidity cost measures weakens substantially as our dealer
constraint measure DCM increases. For instance, the conditional correlation based on the
highest DCM decile (i.e., when dealers are most constrained) is a mere 17% for TCOST, and
hence economically and statistically significantly lower than the full-sample correlation of
31%. Moreover, we also observe a monotonic increase in both liquidity cost measures and
also a stronger commonality of VLOOP and TCOST (i.e., cor(VLOOP, TCOST)) across the
DCM percentiles.

These initial results suggest that market liquidity tends to deteriorate when dealers are
more constrained. Our preliminary explanation (which we formalise in Section 5) for these
empirical findings is that there are two main forces at play when dealers are constrained: On
the one hand, violations of no-arbitrage conditions (i.e., VLOOP) increase as dealers charge a
higher mark-up (or mark-down) across currency pairs reflecting the increase in the shadow
cost of intermediary constraints. On the other hand, due to the surge in the cost of inter-
mediation capacity dealers also post more conservative bid and ask quotes and thus increase
transaction costs (i.e., TCOST). Consequently, a higher spread discourages clients’ trading ac-
tivity and suppresses trading demands. As a result, equilibrium volume increases at a slower
pace relative to the rise in liquidity costs, which results into a weakening correlation between
the cost of liquidity provision and dealer-provided volume during constrained periods.

Table 2: Liquidity provision cost characteristics across DCM percentiles

DCM percentile cor(VLOOP, VLM) cor(TCOST, VLM) cor(VLOOP, TCOST) VLOOP in % TCOST in % VLM in $bn

full sample 0.0 0.12 0.31 0.22 0.05 1.12 148.66
least constrained 0.1 0.12 0.31 0.22 0.05 1.14 150.21

0.2 0.11 **0.30 0.22 0.05 1.18 153.27
0.3 0.13 *0.30 0.22 0.05 1.21 157.93
0.4 0.13 **0.30 0.22 0.05 1.23 159.24
0.5 0.12 ***0.28 0.21 0.05 1.23 158.99
0.6 0.12 ***0.22 0.21 0.06 1.28 161.65
0.7 0.10 ***0.16 *0.20 0.06 1.32 169.36
0.8 ***0.06 ***0.18 0.22 0.06 1.35 176.74

most constrained 0.9 ***−0.03 ***0.17 ***0.28 0.06 1.44 180.52

Note: This table shows the conditional correlation of our two liquidity cost measures (i.e., VLOOP and TCOST)
and total trading volume VLM across the percentiles of the dealer constraint measure (DCM, columns 1 and 2).
Column 3 reports the conditional correlation between VLOOP and TCOST. The underlying data are based on a
panel of 15 currency pair triplets. The asterisks *, **, and *** indicate that the correlation is significantly different
from the full sample (in the first row) estimate at the 90%, 95%, and 99% levels. The corresponding test statistic
for the conditional correlation corτ being equal to the full sample correlation corτ=1.00, where τ ∈ 0.1, 0.2, ..., 0.9
refers to DCMt deciles, are based on the Fisher z-transformation. Columns 4 to 6 report the within-decile average
VLOOPk,t (VLOOP) in %, TCOSTk,t (TCOST) in %, and the average VLMk,t (VLM) in $bn across 15 currency
pair triplets. The full sample covers the period from 1 November 2011 to 30 September 2020.

15Note that the CLS volume data include the FX trading activity of all top dealer banks listed in the Euromoney
FX surveys. In particular, the banks that show up in the Euromoney FX surveys are also the most dominant
players on the CLS settlement system. Moreover, the decline in DCM since 2012 is also consistent with the rise of
electronic and algorithmic trading activity in the global FX market.
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4.2. Smooth transition regressions

We next briefly describe our main econometric approach based on smooth transition re-
gression (LSTAR) models (e.g., van Dijk, Teräsvirta, and Franses, 2002; Christiansen et al.,
2011). The LSTAR model is particularly well-suited for our analysis as constrained and un-
constrained regimes are determined endogenously and may vary smoothly over time.16

For the LSTAR model, let G(zt−1) be a logistic function depending on the 1-day lagged
regime variable zt−1

G(zt−1) = (1 + exp(−γ′(zt−1 − c)))−1, (3)

where the parameter c is the central location and the vector γ determines the steepness of
G(zt−1). Hence, the LSTAR model is of the form

yk,t = λt + αk + [1 − G(zt−1)]β
′
1 fk,t + G(zt−1)β′

2 fk,t + β′
3wk,t + εk,t, (4)

where the dependent variable is one of our two liquidity cost measures (i.e., VLOOP or
TCOST) and fk,t (wk,t) are state-dependent (state-independent) regressors. We include both
cross-sectional αk and time-series λt fixed effects to control for any unobservable heterogene-
ity that is constant across triplets of currency pairs k and days t, respectively. For estimation,
we use the generalised method of moments (GMM) and determine the optimal parameters γ

and c by nonlinear least squares minimising the concentrated sum of squared errors.17 Note
that the slope coefficients in Eq. (4) vary smoothly with the regime variable zt−1 from β1 at
low values of γ′zt−1 to β2 at high values of γ′zt−1. There are two interesting boundary cases:
First, if β1 = β2 we effectively have a linear regression. Second, the limit case where γ → ∞
is equivalent to a linear regression with a dummy variable.

The state-dependent explanatory variable fk,t is the total dealer-provided trading volume
(i.e., VLMk,t) that is defined as the sum of trading volume in one non-dollar as well as two
dollar currency pairs within a particular currency pair triplet k. The state-independent vari-
able is the realised variance (i.e., RVk,t) in the direct non-dollar currency pair (e.g., AUDJPY)
that we estimate following Barndorff-Nielsen and Shephard (2002) as the sum of squared
intraday midquote returns. Note that across all regression specifications both LHS and RHS
variables are taken in logs and first differences. The obvious advantage of this is twofold:
First, regression coefficients can be interpreted as elasticities. Second, FX volume in levels
is non-stationary and persistent (see Ranaldo and Santucci de Magistris, forthcoming 2022),
hence taking first-differences is an effective remedy to render the series stationary.

Table 3 shows the passage from a linear model with a dummy to a nonlinear smooth

16As a robustness check, we have also experimented with Markov chain switching models using DCM as an
exogenous state variable and found consistent results. These additional findings are available upon request.

17Our inference is based on Driscoll and Kraay’s (1998) covariance matrix that allows for random clustering
and serial correlation up to 8 lags. We choose the optimal bandwidth using the plug-in procedure for automatic
lag selection by Andrews and Monahan (1992) and Newey and West (1994), respectively.
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transition regression (LSTAR). To be specific, the first two columns in this table report the
results from estimating a linear model (OLS) of the form

yk,t = λt + αk + β′
1 fk,t + δ′ fk,t · Dt−1 + β′

3wk,t + ϵk,t, (5)

where fk,t and wk,t collect all regressors and Dt−1 is a 1-day lagged interaction variable cap-
turing periods of heightened dealer constraints. Note that the estimate of δ corresponds to
the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1) of
the LSTAR model in Eq. (4). In column ‘Dummy’, Dt is equal to one if DCMt is above its
75% percentile in period t. Note that the specification in ‘Dummy’ is a simple, yet intuitive,
approximation of nonlinear regression model. In column ‘Logistic’, Dt is a logistic transfor-
mation of DCMt based on 1/[1 + exp(−γDCMt)], where γ determines the steepness of the
function. For simplicity, we set γ = 1 but the results in column ‘Logistic’ are robust for values
of γ ranging from 1 to 12. Lastly, in column ‘LSTAR’ the table shows results from a smooth
transition regression as in Eq. (4), which constitutes our main econometric approach. Again,
the logistic function G(zt−1) depends on 1-day lagged values of our dealer constraint measure
DCMt.18 Note that across each of the three specifications we control for the realised variance
in the direct non-dollar currency pair (e.g., AUDJPY).19

There is a consistent picture that arises across all three specifications in Table 3: the differ-
ence between the slope coefficient on total trading volume in constrained and unconstrained
periods (i.e., β2 − β1) is negative and highly statistically significant for both VLOOP and
TCOST. Moreover, the estimated slope coefficients are almost identical for the linear model
with dummy (column ‘Dummy’) and the LSTAR model (column ‘LSTAR’). In both cases, the
slope coefficient is at least 80% (e.g., −0.08/0.09 = 89%) lower when dealer banks are con-
strained and hence less willing or able to cater their customers’ trading demands. In sum,
two findings stand out from this analysis: First, dealer-provided volume covaries significantly
less with VLOOP and TCOST during times when dealers are more constrained. Second, it is
above all the relation between VLOOP and trading volume that strongly diverges and even
exhibits negative (albeit insignificant) coefficients in the constrained regime.

Taken together, these results highlight the state-dependent nature of the relation between
our two liquidity cost measures (i.e., VLOOP and TCOST) and dealer-intermediated trading
volume.20 Moreover, the estimated coefficient linking VLOOP and TCOST to DCM can be
interpreted as an elasticity due the log and first-difference transformation of all variables.
From this perspective, our results suggest that when dealers face constraints their liquidity

18In the Online Appendix we show that our findings are robust to using up to 22 lags (see Figures B.4 and B.5).
19Moreover, in the Online Appendix we show that our findings are robust to including the cross-currency (CIP)

basis (e.g., Akram, Rime, and Sarno, 2008; Du, Tepper, and Verdelhan, 2018) and the Amihud (2002) price impact
as a control for FX funding (Andersen et al., 2019; Rime et al., 2021) and market liquidity (e.g., Ranaldo and
Santucci de Magistris, forthcoming 2022), respectively.

20Note that our estimates for the difference in the slope coefficients across constrained and unconstrained
regimes are very similar when using either VLOOP or TCOST as a regressor and VLM as the dependent variable.
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supply becomes less elastic. As a result, FX liquidity conditions (i.e., VLOOP and TCOST)
deteriorate (see Table 2), since liquidity supply does not keep up with the rise in demand.

Table 3: From linear model with dummies to smooth transition regressions

VLOOP TCOST

Dummy Logistic LSTAR Dummy Logistic LSTAR

γ 1.00 ***12.05 1.00 ***5.94
c ***−0.14 ***0.39

Unconstrained volume ***0.08 ***0.16 ***0.11 ***0.09 ***0.12 ***0.09
[2.94] [3.47] [3.50] [11.07] [8.55] [10.85]

Constrained volume −0.07 *−0.09 −0.05 0.01 0.02 0.01
[1.37] [1.72] [1.40] [0.85] [1.14] [0.96]

Realised variance **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03
[2.05] [2.01] [2.02] [7.98] [7.95] [7.95]

Constrained-Unconstrained ***−0.14 ***−0.25 ***−0.16 ***−0.08 ***−0.10 ***−0.08
[2.66] [2.90] [3.25] [4.88] [4.19] [4.78]

R2 in % 0.13 0.14 0.15 3.78 3.73 3.78
Avg. #Time periods 2,182 2,182 2,182 2,185 2,185 2,185
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: In columns labelled ‘Dummy’ and ‘Logistic’ this table reports results from estimating a linear model
(OLS) of the form yk,t = λt + αk + β′1 fk,t + δ′ fk,t · Dt−1 + β′3wk,t + ϵk,t, where the dependent variable yk,t is
a liquidity cost measure (i.e., VLOOP or TCOST), fk,t and wk,t collect all regressors and Dt−1 is a 1-day
lagged interaction variable capturing distressed market periods. Note that the estimate of δ corresponds to the
difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1) in column ‘LSTAR’. In
column ‘Dummy’, Dt is equal to one if DCMt is above its 75% percentile in period t. In column ‘Logistic’, Dt

is a logistic transformation of DCMt based on 1/[1 + exp(−γDCMt)], where γ determines the steepness of
the function. In column ‘LSTAR’ the table shows results from a smooth transition regression (LSTAR) of the
form yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where fk,t (wk,t) are state-dependent

(state-independent) regressors and G(zt−1) is a logistic function depending on the state variable zt−1. The regime
variable is the 1-day lagged value of DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.

To hone some further intuition for the LSTAR model, we plot the resulting time path of
the fitted regime function G(DCMt) for VLOOP and TCOST in Panels A and B of Figure 4.
Except for the first two years of the sample, the fitted G(DCMt) is mostly close to 0 (it is less
than 0.25 on 57% and 72% of the days in the sample for VLOOP and TCOST, respectively)
and occasionally increases above 0.75 (36% and 22% of the days for VLOOP and TCOST, re-
spectively). These upward spikes are particularly pronounced during the European sovereign
debt crisis through 2014/15, uncertainty around Brexit and US elections in 2016, and also the
Covid-19 period in 2020. Hence, the unconstrained regime (when β1 is the effective slope
coefficient) corresponds to a normal market situation, while the constrained regime (when
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the effective slope coefficient is close to β2) represents stressed periods when dealers face
constraints on their intermediation capacity.

Besides the LSTAR approach, we also rely on an alternative methodology in the robustness
section of the paper. Specifically, we estimate the correlation between each of our two liquid-
ity cost measures (i.e., VLOOP and TCOST) and dealer-intermediated volume in a rolling
window fashion and regress it on DCM. Consistent with our baseline results, we find that
the rolling correlation between VLOOP or TCOST and volume decreases as DCM increases.
Moreover, we extract exogenous liquidity demand and supply shocks from a structural vec-
tor autoregression inspired by Goldberg (2020) and Goldberg and Nozawa (2020). We use the
demand shocks as an instrument for DCM and the supply shocks as an alternative measure
of tightening dealer constraints (see Section 6 for further details).

Figure 4: Time-series of fitted regime function G(DCM)
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Note: Panel A of this figure shows the fitted regime function G(DCMt) for VLOOP using the point estimates
in column 3 of Table 3, whereas Panel B shows the fitted regime function G(DCMt) for TCOST using the point
estimates in column 6 of Table 3. The sample covers the period from 1 November 2011 to 30 September 2020.

5. A simple model of constrained liquidity supply

This section presents a static partial equilibrium model that rationalises the two main empir-
ical findings from the previous section:

1. The cost of liquidity provision (i.e., VLOOP and also TCOST) is higher when FX dealers
are more constrained (see Table 2).
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2. Dealer-intermediated volume and liquidity provision costs co-move when dealers are
unconstrained but the positive correlation decreases in dealer constraints (see Table 3).

The model features two periods (t = 0, 1), three currency pairs (forming a triplet of currencies)
and two types of agents: liquidity traders and one representative dealer. At t = 0, liquidity
traders arrive and trade with the dealer. At t = 1, the uncertainty is resolved.

5.1. Trading environment

FX spot contracts. Let x, y, and z denote the three currency pairs, for instance, EURCAD,
USDEUR, and USDCAD, respectively. Let p denote the exchange rates of the three currency
pairs [px, py, pz]T at t = 0. For instance, for currency pair x, 1 EUR = px CAD. More specifi-
cally, let aj and bj denote the ask and bid price of currency pair j, and mj and sj denote the
mid-quote and the bid-ask spread of currency pair j where j ∈ {x, y, z}.

The agents trading these three currency pairs at t = 1 receive their fundamental value.
Note that in terms of fundamental value there is no difference between the direct FX rate
(i.e., EURCAD) and the synthetic rate computed with two indirect rates (i.e., first trading
USDEUR and then USDCAD). We denote the fundamental value of the three currency pairs
as ẽ = [ẽx, ẽy, ẽz]T. The mean and variance of the fundamental value are e = [ex, ey, ez]T and
σ = [σ, σ, σ]T. Note that the three fundamental values are intimately linked via ex = eyez.

Liquidity traders. We model liquidity demand in reduced form, following the classic mar-
ket microstructure literature (see, e.g., Grossman and Miller, 1988; Hendershott and Menkveld,
2014). At t = 0, the demand for a currency pair is given by L = λσ(1− s), where λ is a tuning
parameter that captures the slope of the demand function. Hence, L increases in volatility σ

but decreases in the bid-ask spread s quoted by the dealer.

Trading demand is imbalanced across the three currency pairs due to diverging private
values among market participants (i.e., disagreement) following the spirit of Gabaix and Mag-
giori (2015).21 For simplicity, we assume that a π > 1/2 fraction of the liquidity traders in
currency pair x are buyers and the rest are sellers. Conversely, for currency pair y, a 1 − π

fraction of liquidity traders are sellers and the rest are buyers. For currency pair z, half of the
traders are buyers, whereas the other half are sellers. Thus, the liquidity traders impose net
buying pressure (2π − 1) in currency pair x and net selling pressure (1 − 2π) in currency pair
y. As a result, the liquidity traders’ demand imbalance (i.e., the net buying/selling pressure)22

21To account for the effect of disagreement, we have explored regression specifications including common
high-frequency measures of disagreement. For instance, we consider the dispersion of order flows of corporates,
funds, non-bank financials, and banks (Cespa et al., 2021) as well as the volume-volatility ratio (Liu and Tsyvinski,
2020) as control variables and have found that our key empirical results remain qualitatively unchanged. These
additional findings are available upon request.

22 As the empirical results suggest in the previous section, the violation of the law of one price does not directly
imply that there are profitable triangular arbitrage opportunities if transaction costs in the form of bid-ask spreads
are sufficiently large. Hence, for simplicity, in the model we abstract away from any cross-market arbitrageurs.
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in each of the three currency pairs is given as

d = λσ(1 − s)× [2π − 1, 1 − 2π, 0]T. (6)

Dealer. There is a representative and risk-averse dealer (see Sec. 3.5 Foucault, Pagano,
and Roell, 2013) who makes the market at t = 0. Being competitive and starting with zero
inventory, the dealer decides on their positions q in the three currency pairs by taking the
market-clearing prices p as given. Note that qj > 0 means the dealer sells the quote and
buys the base currency in currency pair j. The dealer is assumed to use debt to finance their
market-making activities (e.g., Scott, 1976; van Binsbergen, Graham, and Yang, 2010). The
cost of market making increases in the per-unit debt funding cost η and has two components:
an inventory cost and a Value-at-Risk component. The inventory cost is proportional to the
net positions in the three currency pairs: 1T|q|, where 1 = [1, 1, 1]T. The Value-at-Risk of
the currency positions is qTΣq (Duffie and Pan, 1997; Adrian and Shin, 2013), where Σ is the
covariance matrix across the triplet of currency pairs.23 The utility of the dealer is given as

UD = E
(

pTq − eTq
)
− η

(
1T|q|︸ ︷︷ ︸

Inventory

+ qTΣq︸ ︷︷ ︸
Value-at-Risk

)
(7)

where the second term in the utility function captures the empirical constraints examined in
Section 4.24 In terms of the link with our empirical analysis, η reflects constraints related to
leverage and funding costs (as reflected in their bond financing costs and CDS premia on the
issued debt), while σ (embedded in qTΣq) captures the Value-at-Risk constraint.

Market clearing. The market clearing condition is the following: At t = 0, liquidity traders’
demand d for immediacy must be equal to the dealer’s liquidity supply q (i.e., d = q).

5.2. Equilibrium outcomes

At t = 0, the supply function of the dealer is pinned down by their first order condition:

∂UD

∂qj =


aj − η − ej︸ ︷︷ ︸

marginal value of selling

− 2ησ2qj︸ ︷︷ ︸
price impact

if qj > 0,

bj + η − ej︸ ︷︷ ︸
marginal value of buying

− 2ησ2qj︸ ︷︷ ︸
price impact

if qj < 0.
(8)

23For tractability, we assume that the three currency pairs are i.i.d. and hence the correlations among them are
zero. In principle, however, the three currency pairs are closely tied together. Somogyi (2021) discusses a set of
realistic assumptions that allows for a non-singular covariance matrix for a triplet of currency pairs.

24“Constraints” in our context refer to impaired intermediation capacity due to higher leverage, funding cost,
or Value-at-Risk and hence do not necessarily imply (regulatory) binding restrictions.
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The first order condition suggests that there are two components in the dealer’s supply func-
tion. The first one is related to the marginal valuation of buying and selling and reflects the
shadow cost of intermediary constraints (Adrian et al., 2014; Duffie, 2018). The second com-
ponent is the price impact that depends on the size and the direction of the order flow, which
stems from the Value-at-Risk constraint. Thus, the supply function is given by

qj =


aj−η−ej

2ησ2 if qj > 0,
bj+η−ej

2ησ2 if qj < 0.
(9)

Facing the liquidity traders’ demand, the bid and ask prices for the three currency pairs
are pinned down by the following six market clearing conditions (see Eqs (10) to (12)). There
are two equations for each currency pair: one for the case when the dealer is buying (i.e., bid
price) and another reflecting the situation when the dealer is selling (i.e., ask price). Taking
the first condition as an example, the left-hand side is the amount sold by the liquidity traders
and the right-hand side is the amount bought from the dealer in currency pair x. Eventually,
in equilibrium, the bid price of currency pair x is determined by market clearing:

−λσ(1 − sx)(1 − π) =
bx + η − ex

2ησ2 , λσ(1 − sx)π =
ax − η − ex

2ησ2 ; (10)

−λσ(1 − sy)π =
by + η − ey

2ησ2 , λσ(1 − sy)(1 − π) =
ay − η − ey

2ησ2 ; (11)

−1
2

λσ(1 − sz) =
bz + η − ez

2ησ2 ,
1
2

λσ(1 − sz) =
az − η − ez

2ησ2 . (12)

Solving the system of equations (i.e., subtracting both sides of the equations on the left
from those on the right in each line of Eqs (10) to (12)), the bid-ask spreads for the three
currency pairs turn out to be the same. The intuition for this hinges on the simplifying
assumptions that the dealers’ debt financing cost as well as the volatility of fundamental
values are the same across the three currency pairs.25 Therefore, in this setup, the bid-ask
spread s is given by the following expression:

s =
2η(1 + λσ3)

1 + 2ηλσ3 . (13)

Thus, we can express TCOST, which is equal to three times the half bid-ask spread (since
financing cost, leverage, and volatility are symmetric across currency pairs) as follows:

TCOST =
3s
2

=
3η(1 + λσ3)

1 + 2ηλσ3 . (14)

25Relaxing the assumption of homogeneous volatility across currency pairs (i.e., having currency pair specific
volatility) does not change the results qualitatively because the market clearing conditions Eqs (10) to (12) are also
currency pair specific.
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One can see that TCOST captures the dealer’s compensation to endure order flow imbalances
due to the clients’ demand for immediacy. Substituting s into the market clearing conditions
yields the following expression for the mid-quote prices in currency pairs x, y, and z:

mx = ex +
ηλσ3 (2π − 1) (1 − 2η)

1 + 2ηλσ3 , my = ey +
ηλσ3 (1 − 2π) (1 − 2η)

1 + 2ηλσ3 , mz = ez. (15)

The mid-quotes of currency pair x and y in Eq. (15) deviate from their fundamental values
ex and ey, respectively, if π ̸= 1

2 or η ̸= 1
2 . On the contrary, the mid-quote for currency pair

z is equal to its fundamental value (i.e., mz = ez).26 The effect of volatility and the dealer
constraints on the mid-quotes are directional and depend on the order imbalance across the
three currency pairs. Take currency pair x as an example. The buying pressure from the
liquidity traders dominates their selling pressure, which creates an inventory imbalance for
the dealer. Maintaining such an inventory imbalance is costly and hence the dealer adjusts
their marginal valuation for currency pair x by pushing up the mid-quote price above its
fundamental value. In other words, the dealer charges a mark-up reflecting the shadow cost
of balance sheet constraints. Thus, the deviations of the mid-quotes (set by the dealer) from
the fundamental values represent violations of the law of one price:

VLOOP = mx − mymz = λσ3(2π − 1)(1 + ez)
η(1 − 2η)

1 + 2ηλσ3 . (16)

Note that such deviations from the law of one price are not necessarily profitable arbitrage
opportunities due to non-zero transaction costs (i.e., TCOST), which define the so-called ar-
bitrage bounds (Shleifer and Vishny, 1997).27

5.3. Comparative statics

Next, we use the empirical results in Section 4 to identify the parameter space of interest of the
model. In turn, we investigate the different channels in the model and then use comparative
statics analysis to support the empirical results.

Taking the first order derivatives of TCOST with respect to η and σ, from Eq. (13) we have

∂TCOST
∂η

=
3(1 + λσ3 + 2ηλσ3)

(1 + 2ηλσ3)2 > 0, (17)

26Note that this choice is for simplicity in the sense that with a slightly different setup on demand imbalances
we could also have that mz ̸= ez. In general, as long as the demand imbalance across the three currency pairs is
not exactly the same, the size of the deviations of the mid-quotes from the fundamental values is different across
the three pairs, generating violations of the law of one price. For brevity, we focus on one particular example.

27As indicated in Footnote 22, the model focuses on the cases when there are no actually profitable arbitrage
opportunities and is hence consistent with the empirical evidence in Section 4.
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∂TCOST
∂σ

=
9ηλσ2

>0 as η<1/2︷ ︸︸ ︷
(1 − 2η)

(1 + 2ηλσ3)2 > 0. (18)

Hence, TCOST increases when the dealer is more constrained (i.e., higher η). Moreover, as
dealer-provided volume is proportional to (1 − s), the model implicitly assumes that s < 1,
since volume cannot be negative. Thus, Eq. (13) implies that η < 1/2 (see the discussion
above). In this case, TCOST increases in volatility σ, which is the key determinant for the
Value-at-Risk measure. Hence, when the dealer’s VaR constraints become more binding, the
bid-ask spread is also higher. The dashed line in Figure 5 visualises these effects.

Figure 5: The effects of volatility and the dealer’s constraint on VLOOP and TCOST
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Note: This figure shows how dealer constraints η and volatility σ affect VLOOP and TCOST, respectively. The
baseline parameters are π = 0.7, λ = 1, σ = 1, η = 0.15, ex = 1.32, ey = 1.1, ez = 1.2, where π denotes the fraction
of liquidity traders that are buyers (sellers) in currency pair x (y), λ is the trading demand parameter, σ is the
fundamental volatility of exchange rates, η is the per-unit debt funding cost, whereas ex, ey, and ez denote the
fundamental values of currency pairs x, y, and z, respectively.

Taking the first order derivative of VLOOP in Eq. (16) with respect to η and σ, we get

∂VLOOP
∂η

=
λσ3(2π − 1)(1 + ez)

(1 + 2ηλσ3)
(1 − s − 2η) , (19)

∂VLOOP
∂σ

= (2π − 1)(1 + ez)
3ηλσ2(1 − 2η)

(1 + 2ηλσ3)2 > 0. (20)

The impact of the dealer’s constraint on VLOOP is more complex due to two offsetting effects.
On the one hand, a constrained dealer (i.e., facing higher η or σ) charges a higher mark-up
(or mark-down) for currency pair x (or y), which increases VLOOP. On the other hand, a
higher η or σ also leads to a higher TCOST as shown in Eq. (17) and Eq. (18). The higher
trading cost suppresses additional trading demands and renders order flows less imbalanced,
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which subsequently dampens VLOOP. In the case of σ, the first channel always dominates the
second and VLOOP increases monotonically in σ (see eq. (20)). Contrarily, VLOOP increases
in η only if η < (1 − s)/2 as shown in Eq. (19). In our sample period (see Table 2) VLOOP
is larger when FX dealers are more constrained, suggesting that empirically the first channel
dominates the second one. Moreover, VLOOP increases relatively less compared to TCOST
as dealer constraints tighten (see Table 2), which is consistent with these two offsetting forces.
Hence, the analysis below focuses on the case where η < (1 − s)/2. The solid line in Figure 5
visualises these effects. Proposition 1 summarises the key predictions.

Proposition 1: Both VLOOP and TCOST are higher when

i) the volatility of the currency pairs is higher and the (representative) dealer faces a more stringent
Value-at-Risk constraint (i.e., higher σ);

ii) the dealer is more constrained (i.e., higher η) due to higher leverage and funding constraints.

5.4. Elasticity of liquidity provision

One of the key empirical finding in Section 4 is that the positive correlation between the cost
of liquidity provision and dealer-intermediated volume decreases when dealers are more
constrained. Through the lenses of our model, we refer to this correlation as the “elasticity
of liquidity provision.” This is because trading volume, VLOOP, and TCOST are equilibrium
outcomes and the corresponding concept of “elasticity” describes how equilibrium volume
co-moves with equilibrium VLOOP and TCOST, respectively, when key structural parameters
such as fundamental volatility or dealer constraints are changing.

In particular, dealer-intermediated volume is given by28

VLM = 3L = 3λσ(1 − s) =
3λσ(1 − 2η)

1 + 2ηλσ3 . (21)

Taking the first order derivative with respect to volatility σ, we have that

∂VLM
∂σ

= 3λ(1 − 2η)
(1 − 4ηλσ3)

(1 + 2ηλσ3)2 . (22)

Thus, dealer-intermediated volume increases in volatility only if λ < 1/(4ησ3). Intuitively,
as discussed above, an increase in volatility affects volume via two channels: First, trading
demand increases due to a larger dispersion in fundamentals. Second, trading demand is sup-
pressed due to the concurrent rise in the bid-ask spread. When the trading demand parameter
λ is small, the former dominates the latter. As shown in Table 2, dealer-intermediated volume
increases in volatility, indicating that the parameter space of interest is indeed λ < 1/(4ησ3).
Thus, for the rest of this section, we only focus on the latter case.

28Note that the scalar 3 comes from the fact that each currency pair triplet comprises three currency pairs.
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From Eq. (22), it is clear that when η is larger, the first order derivative is smaller (yet still
positive). Put differently, dealer-intermediated volume (i.e., VLM) increases in volatility (i.e.,
σ) at a slower pace as the dealer becomes more constrained. Lemma 1 summarises this result.

Lemma 1: When the dealer is more constrained, volume increases in volatility at a slower pace.

Both TCOST and VLOOP increase in volatility σ for a given level of the dealer’s constraint
η (see Eqs (18) and (20)). Specifically, an increase in volatility is associated with a rise in equi-
librium volume (i.e., VLM) as well as an increase in both TCOST and VLOOP, respectively.
To translate this co-movement into an elasticity of liquidity supply we take the ratio of these
two partial derivatives with respect to volatility σ:

∂VLM
∂σ

/
∂TCOST

∂σ
=

(1 − 4ηλσ3)

3ησ2 ,
∂VLM

∂σ
/

∂VLOOP
∂σ

=
(1 − 4ηλσ3)

ησ2(2π − 1)(1 + ez)
, (23)

where the partial derivatives are capturing changes in volume (VLM) together with TCOST
(left-hand side of Eq. (23)) as well as changes in VLM and VLOOP (right-hand side of Eq. (23)),
respectively. In essence, Eq. (23) captures how the co-movement between dealer-provided
volume and the two liquidity cost measures changes conditional on the level of the dealer’s
constraint η. In our empirical analysis, we capture such changes in the co-movement of
volume and liquidity costs via state-dependent regression analyses (see Section 4).

Figure 6 visualises the elasticity of liquidity provision across constrained and uncon-
strained regimes. The solid lines plot equilibrium volume against the two liquidity cost
measures conditional on changing volatility σ. The grey lines indicate unconstrained states
with low η, while the black lines refer to constrained states with high η. The grey dotted
lines correspond to the unconstrained (and low volatility) periods in the empirical analysis,
whereas the black dotted lines depict the constrained (and high volatility) periods.

When the dealer is unconstrained (i.e., small η) the two liquidity cost measures are small
as well (see grey lines). Hence, in unconstrained periods liquidity provision is elastic since
both variables are positively correlated conditional on different realisations of volatility. How-
ever, when the dealer is more constrained, the line shifts towards the upper right (see black
line). In this new equilibrium, trading volume is only marginally higher, whereas both liquid-
ity cost measures increase substantially. The grey and black dashed tangent lines capture the
elasticity of liquidity provision across the two market states. The slope of the black dashed
line is much steeper compared to the grey line, suggesting that liquidity provision is less
elastic when the dealer is more constrained. This numerical result is fully consistent with
the fact that both derivatives in Eq. (23) are decreasing in η. The underlying mechanism
for this finding evolves along two dimensions: First, the constrained dealer charges a higher
mark-up (or mark-down) relative to the midquote resulting into a higher VLOOP. Second, the
constrained dealer also charges a higher bid-ask spread which directly translates to a higher
TCOST. Taken together, the increase in both VLOOP and TCOST leads to a slower increase in
equilibrium trading volume. Proposition 2 summarises these results.
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Proposition 2: Dealer-intermediated volume co-moves with both VLOOP and TCOST. However, this
co-movement, which captures the elasticity of liquidity provision, weakens when the dealer is more
constrained due to higher leverage and/or funding costs (i.e., higher η).

Figure 6: The elasticity of liquidity provision
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Note: This figure plots dealer-intermediated volume against VLOOP and TCOST, respectively. The baseline
parameters are π = 0.7, λ = 1, ex = 1.32, ey = 1.1, ez = 1.2, where π denotes the fraction of liquidity traders that
are buyers (sellers) in currency pair x (y), λ is the trading demand parameter, whereas ex, ey, and ez denote the
fundamental values of currency pairs x, y, and z, respectively. The unconstrained dealer faces η = 0.05, whereas
the constrained one is exposed to η = 0.1. The solid lines indicate the equilibrium outcomes when varying the
volatility of the exchange rates σ from 0.5 to 0.7. The grey dashed line indicates the derivative of volume with
respect to VLOOP and TCOST when the dealer is unconstrained and volatility is low. The black dashed line is the
derivative of volume with respect to VLOOP and TCOST when the dealer is constrained and volatility is high.

Proposition 2 finds compelling support in our empirical analyses. Specifically, Table 2
shows that dealer-intermediated volume increases even when dealers are more constrained.
However, the state-dependent relation between intermediated volume and the cost of liquidity
provision weakens when dealer constraints intensify. This result holds for both liquidity cost
measures (VLOOP and TCOST) no matter which econometric model is applied (Table 3) and
after controlling for volatility and other confounding factors (see Online Appendix).

6. Additional analyses and robustness tests

The key goal of our empirical analysis is to show how the elasticity of dealer banks’ liq-
uidity provision (i.e., the correlation between the cost of liquidity provision and dealer-
intermediated volume) weakens as dealer constraints tighten. To demonstrate this we have
relied on logistic smooth transition regressions (LSTAR) that are particularly well-suited to
capture nonlinear relations. However, one might wonder whether our results are robust to
using alternative methods and measures of dealer constraints. To address this issue, we em-
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ploy rolling window correlations and structural vector autoregressions to infer exogenous
liquidity demand and supply shocks directly from price and quantity data.

6.1. Disentangling liquidity demand and supply

The empirical analysis based on LSTAR has employed our dealer constraint measure (i.e.,
DCM) as an exogenous proxy for liquidity supply shocks. Here, we take the analysis one
step further by explicitly disentangling liquidity demand and supply shocks using a struc-
tural vector autoregression with sign restrictions. Specifically, we build on the approach by
Uhlig (2005) and others (e.g., Canova and Nicoló, 2002; Rubio-Ramírez, Waggoner, and Zha,
2010), which has become widely used in economics and finance to estimate models with sign
restrictions. Eventually, we are using the supply shocks as an alternative measure for tighten-
ing dealer constraints. Moreover, we employ demand shocks as an instrument for our dealer
constraint measure. The economic intuition following our theoretical framework in Section 5
is that a positive liquidity demand shock causes more imbalanced customer order flows to
which dealers respond by increasing the bid-ask spread to dampen volumes. In addition, con-
currently, no-arbitrage deviations also increase due to the customer order flows being more
imbalanced. Hence, demand shocks can have an impact via dealer constraints on the relation
between trading volume and our two liquidity cost measures (i.e., VLOOP and TCOST). Our
empirical analysis proceeds in two steps.

In a first step, we estimate a structural (bivariate) vector autoregression (SVAR) model
of liquidity cost measures (i.e., VLOOP or TCOST) and dealer-provided volume VLM. To
identify liquidity supply and demand shifts, we estimate the SVAR imposing sign restrictions
in the spirit of Cohen, Diether, and Malloy (2007), Goldberg (2020), and Goldberg and Nozawa
(2020), respectively, using Bayesian methods (see the Online Appendix Section C for a detailed
explanation of the setup and the estimation procedure). In particular, the sign restrictions
assume that supply shifts lead to changes in liquidity costs and trading volume that have
opposite signs (i.e, a fall in dealer-intermediated trading volume corresponds to an increase
in liquidity costs). Demand shifts, by contrasts, are assumed to lead to changes in liquidity
costs and volume that have the same sign (i.e., higher intermediated trading volume goes in
hand with a deterioration of liquidity costs).

In a second step, we estimate the correlation between the cost of liquidity provision (i.e.,
VLOOP or TCOST) and dealer-intermediated trading volume (i.e., VLM) in a 30-day rolling
window29 fashion (cf. Figure C.3) and estimate the following panel regression model:

ρk,t = αk + η1DCMt + η2RVk,t + η3Amihudk,t + ϵk,t, (24)

where the dependent variable is the 30-day rolling window correlation of a liquidity cost
measure (i.e., VLOOP or TCOST) and trading volume, αk denotes currency triplet fixed ef-

29All our results are qualitatively unchanged when using longer or shorter estimation windows.
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fects, RVk,t (Amihudk,t) the realised variance (Amihud (2002) price impact) in the non-dollar
currency pair within each triplet k, and DCMt is our dealer constraint measure. Throughout
this paper, we estimate Amihud as the ratio between daily realised volatility and aggregate
daily trading volume following Ranaldo and Santucci de Magistris (forthcoming 2022).

Table 4 documents the results of estimating Eq. (24) by OLS and 2SLS, respectively. In
particular, Panel A shows the OLS estimates of Eq. (24), whereas Panel B uses liquidity de-
mand shocks δd

k,t from the SVAR as an instrument for DCM.30 The (unreported) first stage
coefficients are highly significant (with an F-statistic well above 10) suggesting that we have
identified an economically relevant instrument for our dealer constraint measure DCM. Panel
C reports the results of using liquidity supply shocks δs

k,t as an alternative measure of tight-
ening dealer constraints.31 The key takeaway from Table 4 is fully consistent with the LSTAR
analysis (see Table 3) and corroborates the idea that soaring dealer constraints are associated
with a significantly lower elasticity of liquidity provision (i.e., smaller ρk,t).

6.2. Robustness tests

To investigate the robustness of our main findings we run five additional empirical tests: i)
decompose the dealer constraint measure into its constituents, ii) split volume into inter-bank
and customer-bank trades, iii) perform a subsample analysis, iv) estimate the LSTAR currency
pair triplet by triplet, and v) account for potential bias in the bid-ask spread.

Different components of dealer constraints. We consider the same LSTAR specification as
in Eq. (4) but instead of our dealer constraint measure DCM we use its four constituents. In
particular, we use the 1-day lagged value of primary FX dealer banks’ quarterly Value-at-Risk
measure (VaR), quarterly He et al. (2017) leverage ratio (HKM), daily credit default spread
(CDS), and daily funding cost yield (DFC) as regime variables. Table 5 reports the estimates
of using each of the four aforementioned measures as a state variable. The difference between
the constrained and unconstrained coefficients is negative and significant across all four spec-
ifications for both VLOOP and TCOST. These estimates are fully in line with our baseline
specification based on DCM in terms of economic magnitudes. The robustness of our results
is not surprising given the strong co-movement across these four different regime variables.

Inter-bank vs customer-bank volumes. We decompose trading volume into to inter-bank
and customer-bank volume to better understand which market segments suffer the most from

30We estimate demand and supply shocks individually for every currency pair triplet and then stack them
together. Our findings are robust to extracting the shocks from a panel SVAR with currency triplet fixed effects.

31In the Online Appendix we also exploit the unexpected removal of the Swiss franc cap on 15 January 2015
by the Swiss National Bank as a quasi-natural experiment. We find that the elasticity of dealer banks’ liquid-
ity provision drops significantly in currency pair triplets involving the Swiss franc (i.e., EUR-USD-CHF and
GBP-USD-CHF) but not in other triplets. These findings support the idea that dealers face currency (pair) specific
risk limits. See the Online Appendix Section D for additional information.
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Table 4: Elasticity of liquidity provision and dealer constraints

cor(VLOOP,VLM) cor(TCOST,VLM)

Panel A (1) (2) (3) (4) (5) (6)

DCM ***−0.03 ***−0.03 ***−0.03 ***−0.04 ***−0.04 ***−0.03
[3.50] [3.51] [3.57] [2.92] [2.92] [2.77]

Realised variance *0.00 0.00 −0.01 −0.01
[1.70] [1.17] [1.47] [0.93]

Amihud (2002) ***0.03 ***−0.08
[3.31] [5.14]

Adj. R2 in % 1.65 1.70 1.87 1.76 1.93 2.80
Avg. #Time periods 2,159 2,159 2,159 2,159 2,159 2,159

Panel B

Instrumented DCM ***−0.07 ***−0.08 ***−0.07 *−0.06 *−0.06 **−0.07
[3.62] [3.75] [3.60] [1.76] [1.77] [2.14]

Realised variance 0.01 0.00 −0.01 −0.01
[1.57] [1.26] [1.47] [0.89]

Amihud (2002) **0.02 ***−0.09
[2.39] [5.54]

Avg. #Time periods 2,159 2,159 2,159 2,159 2,159 2,159

Panel C

δs ***−0.01 ***−0.01 ***−0.01 ***−0.02 ***−0.02 ***−0.02
[3.64] [3.61] [3.76] [4.28] [4.75] [4.10]

Realised variance *0.00 *0.00 −0.01 −0.01
[1.89] [1.89] [1.51] [1.45]

Amihud (2002) 0.00 −0.01
[0.02] [1.46]

Adj. R2 in % 0.10 0.13 0.13 0.38 0.62 0.77
Avg. #Time periods 2,256 2,256 2,256 2,256 2,256 2,256

#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time series FE no no no no no no

Note: This table reports results from daily fixed effects panel regressions of the form ρk,t =

αk + η1DCMt + η2RVk,t + η3 Amihudk,t + ϵk,t, where the dependent variable is the 30-day rolling window
correlation of a liquidity cost measure (i.e., VLOOP, or TCOST) and trading volume (i.e., VLM), αk denotes
cross-sectional fixed effects, RVk,t (Amihudk,t) the realised variance (Amihud (2002) price impact) in the non-dollar
currency pair within each triplet k, and DCMt is our dealer constraint measure. Panel A shows the OLS estimates
of Eq. (24), whereas Panel B uses liquidity demand shocks δd as an instrument for DCM. Panel C reports
the results of using liquidity supply shocks δs as an alternative measure of tightening dealer constraints. All
regressors have been normalised to have unit standard deviation. Hence, the regression coefficients measure
the increase in ρ associated with a one standard deviation increase in DCM and δs, respectively. The sample
covers the period from 1 September 2012 to 30 September 2020. The test statistics based on Driscoll and Kraay
(1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in procedure
for automatic lag selection by Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote
significance at the 90%, 95%, and 99% levels.

reduced liquidity provision when dealer constraints tighten. Specifically, the CLS customer-
bank order flow data comprise three groups of customers, that is, corporates, funds, and
non-bank financials.32 Note that bilateral trades between two such customer groups are quasi
non-existent given the two-tier structure of the FX market (Rime and Schrimpf, 2013) and

32See Cespa et al. (2021) and Ranaldo and Somogyi (2021) for a detailed description of the CLS flow data set.
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Table 5: Smooth transition regression with different state variables

VLOOP TCOST

VaR HKM CDS DFC VaR HKM CDS DFC

γ ***11.15 ***4.97 ***9.20 ***12.10 ***12.08 ***4.93 ***12.03 ***3.92
c ***0.25 ***0.59 ***−0.10 ***−0.35 ***0.39 ***0.60 ***−0.16 ***−0.10

Unconstr. volume ***0.09 **0.06 ***0.08 ***0.16 ***0.09 ***0.09 ***0.10 ***0.10
[3.16] [2.23] [2.89] [3.59] [11.35] [10.61] [11.26] [7.83]

Constr. volume **−0.08 −0.03 *−0.06 −0.01 *0.02 **0.03 **0.03 ***0.04
[2.12] [0.73] [1.66] [0.42] [1.65] [2.45] [2.31] [2.99]

Realised variance **0.02 **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03 ***0.03
[2.07] [2.13] [2.11] [2.09] [8.35] [8.39] [8.37] [8.00]

Constr.-Unconstr. ***−0.17 *−0.10 ***−0.15 ***−0.18 ***−0.07 ***−0.05 ***−0.07 ***−0.06
[3.50] [1.68] [3.00] [3.04] [4.28] [3.28] [4.83] [2.82]

R2 in % 0.13 0.08 0.11 0.15 3.72 3.65 3.77 3.66
BIC 91.61 91.62 91.61 91.06 49.24 49.25 49.23 48.55
Avg. #Time periods 2,280 2,280 2,280 2,182 2,284 2,284 2,284 2,185
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variables are the 1-day lagged
value of primary FX dealer banks’: quarterly Value-at-Risk measure (VaR, columns 1 and 6), quarterly He et al.
(2017) leverage ratio (HKM, columns 2 and 7), daily credit default spread (CDS, columns 3 and 8), and daily
funding cost yield (DFC, columns 4 and 9). Note that we assign an equal weight to each top 10 FX dealer bank
(based on the Euromoney FX survey) when computing a cross-sectional average. The optimal parameters γ and
c are determined by nonlinear least squares minimising the concentrated sum of squared errors. Both dependent
and independent variables are taken in logs and changes. The sample covers the period from 1 November 2011
to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for
random clustering and serial correlation (using the plug-in procedure for automatic lag selection by Andrews
and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance
at the 90%, 95%, and 99% levels.

hence also do not form part of the data that CLS provides. As a result, the customer-bank data
only contains trades that pass through an FX dealer bank (e.g., Citi Bank or UBS). Moreover,
the inter-bank data include trades between two banks that are members of the CLS system.
Some of these banks are GSIBs, whereas others include lower-tier banks outside of the main
dealer community (e.g., Danske Bank or Commerzbank).

Table 6 reports the results of estimating the LSTAR model in Eq. (4) based on inter-bank
and customer-bank volume rather than total volume. To be precise, we define total volume in
each client group as the sum of buy and sell volume in a given currency pair. There is an inter-
esting picture that arises: On the one hand, the coefficients related to unconstrained volume
of the inter-bank segment are higher than those of the customer-bank segment suggesting a
more elastic liquidity provision in the former. On the other hand, the elasticity of liquidity
provision weakens significantly with dealer constraints for both inter- and customer-bank
trading activity. However, the economic magnitudes of the constrained minus unconstrained
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coefficients suggest that large dealer banks mainly curtail their liquidity provision in trades
with other banks facing similar constraints. Of course, this does not rule out the possibility
that dealers charge higher spreads to their customers when they are more constrained.

Table 6: Smooth transition regression with different counterparty groups

VLOOP TCOST

Non-bank Non-bank Bank Bank Non-bank Non-bank Bank Bank

γ 20.01 20.02 ***20.03 ***20.06 20.04 20.08 ***14.96 **20.03
c ***1.10 ***0.37 ***−0.15 ***−0.15 0.03 0.03 ***0.57 ***0.58

Unconstr. volume **0.03 *0.03 ***0.12 ***0.11 ***0.03 ***0.02 ***0.12 ***0.09
[2.11] [1.87] [3.68] [3.14] [6.77] [5.40] [13.70] [9.53]

Constr. volume −0.03 −0.02 −0.05 −0.06 0.01 0.00 0.02 −0.01
[1.16] [0.81] [1.07] [1.38] [1.51] [0.33] [1.07] [0.23]

Realised variance **0.02 *0.02 ***0.04 ***0.03
[2.27] [1.68] [9.02] [7.14]

Constr.-Unconstr. **−0.06 −0.05 ***−0.17 ***−0.17 ***−0.02 ***−0.02 ***−0.09 ***−0.09
[2.06] [1.62] [2.98] [2.96] [2.62] [2.86] [3.84] [3.74]

R2 in % 0.05 0.10 0.14 0.16 0.54 2.99 2.49 3.90
Avg. #Time periods 1,979 1,979 1,979 1,979 1,983 1,982 1,983 1,982
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variable is the 1-day lagged
value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear
least squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 September 2012 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Newey and West, 1994) are reported in
brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

Non-bank liquidity providers. To shed some light on the importance of non-bank liquidity
providers (e.g., XTX, HC Tech or Jump Trading) we split our sample period into two halves.
The first half concerns the time period from November 2011 until May 2016, whereas the
second half runs from June 2016 to September 2020. Our sample split is motivated by the
fact that XTX enters the top 10 of the Euromoney FX surveys for the first time in 2016. Ta-
ble 7 documents the same regression specifications as in our baseline in Eq. (4) except for
the time periods being different. The key takeaway from comparing the constrained minus
unconstrained coefficients across the first and second half of the sample is that the economic
magnitudes of the coefficients are almost twice as large for the first half than for the second
half. We interpret this as suggestive evidence in favour of the idea that non-bank liquid-
ity providers are much less affected by our dealer constraint measure and are hence able to
provide additional liquidity when dealer banks are more constrained.
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Table 7: Sample split: Smooth transition regression with DCM as state variable

11/2011 – 05/2016 06/2016 – 09/2020

VLOOP TCOST VLOOP TCOST

γ ***4.98 ***4.96 ***6.51 ***7.48 12.03 12.06 12.02 12.10
c ***−0.40 ***−0.41 ***−0.41 ***−0.40 *0.47 *0.46 ***0.89 ***0.90

Unconstr. volume 0.06 0.05 ***0.13 ***0.11 ***0.13 **0.10 ***0.13 ***0.10
[1.42] [1.07] [10.72] [8.62] [3.10] [2.38] [10.89] [7.36]

Constr. volume *−0.09 **−0.10 *0.03 0.01 0.10 0.08 ***0.08 **0.05
[1.82] [2.00] [1.92] [0.51] [1.44] [1.08] [3.36] [2.03]

Realised variance 0.01 ***0.02 **0.03 ***0.03
[1.20] [4.44] [2.27] [6.39]

Constr.-Unconstr. **−0.15 **−0.15 ***−0.10 ***−0.10 −0.03 −0.03 **−0.05 *−0.05
[2.26] [2.24] [5.35] [5.18] [0.36] [0.32] [2.04] [1.85]

R2 in % 0.06 0.08 2.77 3.77 0.17 0.24 2.41 3.82
Avg. #Time periods 1121 1121 1122 1122 1061 1060 1063 1062
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the 1-day lagged value
of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and
West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

LSTAR estimates currency pair triplet by triplet. Thus far, we have mainly focused on
the time-series dimension of the relation between trading volume and the cost of liquidity
provision but have not delved deeper into the cross-section of currency pair triplets. To
explore the cross-sectional heterogeneity, we estimate the LSTAR model individually for 15
triplets of currency pairs. We further contrast the result with a simple linear model that does
not distinguish between constrained and unconstrained regimes. We report these analyses in
the Online Appendix (see Tables B.1 and B.2).

The currency pair triplet by triplet estimates strongly support the idea that intermedi-
ary constraints nonlinearly impact the relation between dealer-provided volume and the cost
of liquidity provision. In particular, the difference between the parameter estimates of con-
strained and unconstrained regimes (i.e., β2 − β1) is significantly negative for 10 and 9 out of
15 triplets of currency pairs for VLOOP and TCOST, respectively. In line with this finding,
the R2s of these regressions are rather close to the linear model. This is entirely expected,
given that the coefficient with respect to trading volume in constrained regimes is close to
zero. In sum, both results are consistent with the idea that in calm periods dealers’ liquidity
provision is elastic supporting FX market liquidity, however it becomes more inelastic when
dealer constraints are tightening.
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Bias in the bid-ask spread. Hagströmer (2021) shows that the effective bid-ask spread mea-
sured relative to the spread midpoint overstates the true bid-ask spread in markets with
discrete prices and elastic liquidity demand (e.g., the currency market). To address this issue,
we compute both no-arbitrage violations VLOOP and round-trip transaction costs TCOST
using the “weighted midpoint” (i.e., mwp) as an alternative measure of the midquote price:

mwp =
b × qbuys + a × qsells

qbuys + qsells , (25)

where b and a are bid and ask prices, respectively, whereas qbuys and qsells are the buy and sell
volume in a given currency pair. Table 8 shows the results of estimating the same regression
specifications as in our baseline in Eq. (4), but using mwp instead of the spread midpoint m
to compute VLOOP and TCOST. The difference between the constrained and unconstrained
coefficient on intermediated-trading volume is negative and economically significant for both
VLOOP and TCOST across most specifications. Thus, we conclude that our findings are not
materially affected by any potential bias in the quoted bid-ask spread in the Olsen data.

To summarise, these additional robustness tests corroborate our previous results and sup-
port the main mechanisms of our model. Dealers promote FX market liquidity in normal
times through elastic liquidity provision. As such, dealer intermediation contributes to better
market liquidity, that is, narrower spreads and more informative prices (i.e., lower transac-
tions costs and tight no-arbitrage conditions). However, during periods of market stress FX
dealer banks are more constrained and as a result their intermediation activities cannot keep
up with the deterioration of market liquidity.

7. Conclusion

In this paper, we have studied whether dealer constraints have adverse implications on mar-
ket liquidity. Using a unique data set of prices and volumes in the FX market, we provide a
novel analytical method to identify and measure the cost of liquidity provision, and its main
components: the shadow cost of intermediary constraints and dealers’ realised compensation
for enduring inventory imbalances. Equipped with these two measures, we show that at
times when dealers’ intermediation capacity is constrained (e.g., due to higher leverage ra-
tios, Value-at-Risk measures or debt funding costs) their cost of liquidity provision increases
disproportionately. As a result, the elasticity of dealer banks’ liquidity provision weakens
by at least 80% relative to periods when they are unconstrained. In other words, during
such constrained regimes dealers’ supply of liquidity is insufficient to curb the deterioration
in liquidity conditions. We rationalise our findings with a theoretical model outlining how
liquidity costs may deteriorate when markets are more volatile and when financial interme-
diaries are more constrained.

We obtain our results for the FX spot market, which is commonly regarded as one of
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Table 8: Weighted midpoint: Smooth transition regression with DCM as state variable

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ **4.97 ***4.99 ***4.91 12.09 ***4.98 ***5.00 ***5.49 ***4.96
c ***1.10 ***−0.41 ***−0.41 ***0.26 ***0.53 ***0.54 ***0.58 ***0.36

Unconstr. volume *0.03 **0.06 **0.06 0.03 ***0.12 ***0.12 ***0.11 ***0.12
[1.69] [2.19] [2.28] [1.52] [11.65] [11.32] [9.24] [9.47]

Constr. volume −0.06 −0.01 −0.01 −0.04 ***0.07 **0.06 **0.05 *0.05
[0.85] [0.50] [0.32] [0.81] [2.70] [2.53] [1.97] [1.77]

Amihud (2002) 0.00 −0.01
[0.05] [1.33]

Realised variance −0.01 ***0.02
[0.80] [3.36]

1M CIP basis 0.00 0.00
[0.72] [0.21]

Constr.-Unconstr. −0.09 *−0.07 *−0.07 −0.07 **−0.06 **−0.06 **−0.06 **−0.07
[1.27] [1.67] [1.69] [1.35] [2.07] [2.07] [2.02] [2.05]

R2 in % 0.02 0.03 0.04 0.03 1.36 1.38 1.56 1.21
Avg. #Time periods 1,981 1,981 1,981 1,786 1,983 1,982 1,982 1,788
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST) computed based on the weighted midquote price (Hagströmer,
2021), fk,t (wk,t) are state-dependent (state-independent) regressors, and G(zt−1) is a logistic function depending
on the state variable zt−1. The regime variable is the 1-day lagged value of the dealer constraint measure DCMt.
The optimal parameters γ and c are determined by nonlinear least squares minimising the concentrated sum of
squared errors. Both dependent and independent variables are taken in logs and changes. The sample covers the
period from 1 September 2012 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.

the most liquid financial markets in the world. However, we believe that our findings also
have implications for other over-the-counter (OTC) markets. For instance, broadly similar
mechanisms could be at play when pricing distortions emerge between similar government
bonds (Hu, Pan, and Wang, 2013) with pronounced deviations from a smooth yield curve
(as observed during the Covid-19 crisis). We leave the study of the role of dealer constraints
on the liquidity provision in other important OTC markets (e.g., government and corporate
bonds, OTC derivatives) to future research.
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Appendix A. Data sources

CLS data. The CLS system is owned by its 72 settlement members, which include all the
dealer banks listed in the Euromoney FX surveys. To protect member anonymity, CLS does
not disclose any transaction-level information about settlement activity. Therefore, the CLS
data set only contains hourly aggregates of the trading activity in each currency pair and
provides no information about traders’ identities or executed transaction prices.

The CLS FX spot volume and order flow data sets are interrelated. Volume data include
the sum of all inter-dealer and dealer-to-customer trades. Order flow data contain separate
entries for buying and selling activity but only for dealer-to-customer transactions. Moreover,
the buy and sell volume in a given hour and currency pair refers to how much of the base
currency was bought and sold by customers from dealer banks (see Somogyi, 2021).

Customers can be categorised into four groups: corporates, funds, non-bank financial
firms, and non-dealer banks. “Funds” may also include principal trading firms (PTFs) such as
high-frequency trading firms and electronic non-bank liquidity providers (e.g., XTX or Jump
Trading). The majority of these PTFs relies on prime brokers to gain access to the FX market
(Schrimpf and Sushko, 2019). Hence, if PTFs trade via a prime broker who is a CLS member,
then this trade would appear as a bank-to-bank trade. Inter-bank trades are excluded from
the flow (but not from the volume) data set unless one of the counterparties is classified as a
non-dealer bank. See Ranaldo and Somogyi (2021) for further details on how CLS categorises
market participants into customers and dealer/non-dealer banks, respectively.

Euromoney FX survey. Major FX dealer banks are at the heart of our composite dealer
constraint measure. For each year from 2011 to 2020, we retrieve the ranking of the top 10 FX
dealer banks from the Euromoney FX surveys, which are publicly available. See Table A.1 for
an overview of the top 10 FX dealer banks over the sample period from 2011 to 2020. Note
that this implies that we do not include any non-bank financial liquidity providers (i.e., XTX
or Jump Trading), which are privately held companies. What follows lists the data source for
each of the four subcomponents of our composite dealer constraint measure (DCM).

• Value-at-Risk (VaR) is retrieved directly from the financial statements for each of the
top 10 dealer banks and is based on the FX risk in banks’ overall trading book. Hence the
VaR measure captures, among others, risks related to fixed income, equities, commodi-
ties, derivatives, and foreign exchange trading positions. The frequency is quarterly.

• Leverage ratio (HKM) is computed following the work by He et al. (2017) as book
debt (i.e., short plus long term debt) relative to the sum of market equity (i.e., shares
outstanding times share price) and book debt that are retrieved from Bloomberg for
each dealer bank. The frequency is quarterly.
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• Credit default spread (CDS) with 5 year maturity is retrieved from Bloomberg for each
dealer bank. The CDS premia are denominated in dollars for US banks and in euros for
all Europeans banks, including the UK domiciled ones. The frequency is daily.

• Debt funding cost (DFC) is retrieved from iBoxx for each dealer bank and corresponds
to the average bond issuance cost across different maturities and major currencies (i.e.,
USD, EUR, and GBP). Note that conceptually our measure of debt funding cost is sim-
ilar to the across-the-curve credit spread index (AXI) proposed by Berndt et al. (2020).
The main difference is that our key measure of bond issuance cost is the annual yield,
whereas Berndt et al. (2020) utilise credit spreads. The frequency is daily.

Figure 1: Time-series of top 10 FX dealer share

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0%

20%

40%

60%

80%

100%

Top 10 FX Dealers
Top 10 NBFIs

Note: This figure reports the market share of the top 10 FX dealer banks (e.g., Citi Bank or UBS) as well as
non-bank financial liquidity providers (i.e., XTX, HC Tech or Jump Trading) for the years 2011 to 2020 from the
Euromoney FX surveys.
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Table A.1: Top 10 FX dealer banks

Rank 2011 2012 2013 2014 2015

1 Deutsche Bank Deutsche Bank Deutsche Bank Citi Bank Citi Bank
2 Barclays Citi Bank Citi Bank Deutsche Bank Deutsche Bank
3 UBS Barclays Barclays Barclays Barclays
4 Citi Bank UBS UBS UBS JP Morgan Chase
5 JP Morgan Chase HSBC HSBC HSBC UBS
6 HSBC JP Morgan Chase JP Morgan Chase JP Morgan Chase Bank of America
7 Royal Bank of Scotland Royal Bank of Scotland Royal Bank of Scotland Bank of America HSBC
8 Credit Suisse Credit Suisse Credit Suisse Royal Bank of Scotland BNP Paribas
9 Goldman Sachs Morgan Stanley Morgan Stanley BNP Paribas Goldman Sachs
10 Morgan Stanley Goldman Sachs Bank of America Goldman Sachs Royal Bank of Scotland

Rank 2016 2017 2018 2019 2020

1 Citi Bank Citi Bank JP Morgan Chase JP Morgan Chase JP Morgan Chase
2 JP Morgan Chase JP Morgan Chase UBS Deutsche Bank UBS
3 UBS UBS Bank of America Citi Bank Deutsche Bank
4 Deutsche Bank Bank of America Citi Bank UBS Citi Bank
5 Bank of America Deutsche Bank HSBC State Street HSBC
6 Barclays HSBC Goldman Sachs HSBC Goldman Sachs
7 Goldman Sachs Barclays Deutsche Bank Bank of America State Street
8 HSBC Goldman Sachs Standard Chartered Goldman Sachs Bank of America
9 Morgan Stanley Standard Chartered State Street Barclays BNP Paribas
10 BNP Paribas BNP Paribas Barclays BNP Paribas Barclays

Note: This table reports the ranking of the top 10 FX dealer banks for the years 2011 to 2020 from the Euromoney
FX surveys. Note that this ranking only includes banks and excludes any non-bank financial liquidity providers
(i.e., XTX, HC Tech or Jump Trading), which are privately held companies.
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Appendix B. Estimating a panel LSTAR model

Figure B.1: Time-series of fitted G(DCM) and VLOOP
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Note: Panel A of this figure shows the fitted regime function G(DCMt), using the point estimates in column 3 of
Table 3. Panel B shows the cross-sectional average of the part of the fitted log changes in VLOOPt that is driven by
unconstrained state coefficients ([1 − G(zt−1)]β

′
1 ft). Panel C shows the cross-sectional average of the part driven

by the constrained state coefficients (G(zt−1)β′2 ft). By construction, the fitted values for log changes in TCOSTt

are the sum of Panels B and C. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure B.2: Time-series of fitted G(DCM) and TCOST
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Note: Panel A of this figure shows the fitted regime function G(DCMt), using the point estimates in column 6 of
Table 3. Panel B shows the cross-sectional average of the part of the fitted log changes in TCOSTt that is driven by
unconstrained state coefficients ([1 − G(zt−1)]β

′
1 ft). Panel C shows the cross-sectional average of the part driven

by the constrained state coefficients (G(zt−1)β′2 ft). By construction, the fitted values for log changes in TCOSTt

are the sum of Panels B and C. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure B.3: Principal component analysis
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Note: This figure plots the share of variation (in %) across currency pair triplets explained by the first 5 principal
components (PCs). The top two figures are based on our two liquidity cost measures (i.e., VLOOP or TCOST),
whereas the bottom figure is based on total trading volume. The sample covers the period from 1 November 2011
to 30 September 2020.
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Table B.3: Smooth transition regression with DCM as state variable

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ ***12.02 ***12.02 ***12.05 ***12.08 ***5.38 ***5.38 ***5.93 ***4.96
c ***−0.14 ***−0.14 ***−0.14 ***−0.20 ***0.34 ***0.34 ***0.39 ***0.34

Unconstr. volume ***0.13 ***0.12 ***0.11 ***0.13 ***0.12 ***0.13 ***0.09 ***0.13
[4.09] [3.96] [3.50] [3.33] [15.01] [15.04] [10.85] [12.17]

Constr. volume −0.04 −0.04 −0.05 −0.05 ***0.04 ***0.04 0.01 **0.03
[1.04] [1.15] [1.40] [1.43] [2.77] [2.91] [0.96] [2.13]

Amihud (2002) −0.01 **0.01
[1.08] [2.24]

Realised variance **0.02 ***0.03
[2.02] [7.95]

1M CIP basis 0.01 0.00
[1.07] [0.65]

Constr.-Unconstr. ***−0.16 ***−0.16 ***−0.16 ***−0.18 ***−0.09 ***−0.09 ***−0.08 ***−0.09
[3.30] [3.30] [3.25] [3.23] [5.22] [5.19] [4.78] [4.63]

R2 in % 0.12 0.13 0.15 0.12 2.47 2.51 3.78 2.31
Avg. #Time periods 2,182 2,182 2,182 1,978 2,186 2,185 2,185 1,981
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the 1-day lagged value
of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and
West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.
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Table B.4: Smooth transition regression with non dealer specific state variables

VLOOP TCOST

VIX XAU TED LOIS VIX XAU TED LOIS

γ ***4.16 *12.08 ***12.06 12.01 *7.65 12.04 12.02 12.07
c ***−0.50 ***−0.17 ***−0.39 **−0.48 ***0.50 *−0.11 0.50 −0.31

Unconstr. volume 0.10 **0.06 −0.02 0.00 ***0.07 ***0.08 ***0.08 ***0.07
[1.64] [2.11] [0.71] [0.07] [9.04] [9.80] [9.27] [5.26]

Constr. volume 0.02 0.00 ***0.09 0.05 ***0.09 ***0.06 ***0.07 ***0.07
[0.46] [0.07] [2.66] [1.02] [5.36] [4.78] [4.84] [5.46]

Realised variance **0.02 **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03 ***0.03
[2.10] [2.15] [2.30] [2.14] [8.39] [8.43] [8.45] [6.54]

Constr.-Unconstr. −0.09 −0.06 **0.12 0.05 0.02 *−0.03 0.00 0.00
[1.03] [1.32] [2.31] [0.83] [0.98] [1.81] [0.14] [0.12]

R2 in % 0.09 0.08 0.11 0.09 3.64 3.65 3.65 3.93
BIC 91.33 91.61 91.44 87.90 48.78 49.21 48.99 43.20
Avg. #Time periods 2,221 2,279 2,247 1,853 2,225 2,283 2,251 1,855
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variables are the 1-day lagged
value of the VIX index, which is the Chicago Board Options Exchange’s volatility index measuring the stock
market’s expectation of volatility based on S&P 500 index options; the gold price (i.e., XAU); the TED spread,
which is the difference between the interest rates for three-month U.S. Treasuries contracts and the three-month
Eurodollars contract; and the LIBOR-OIS spread (i.e., LOIS), which is considered to be measuring the health of
the banking system. The optimal parameters γ and c are determined by nonlinear least squares minimising the
concentrated sum of squared errors. Both dependent and independent variables are taken in logs and changes.
The sample covers the period from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll
and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in
procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in
brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.
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Table B.5: Smooth transition regression with different state variables using market shares

VLOOP TCOST

VaR HKM CDS DFC VaR HKM CDS DFC

γ ***12.05 ***12.05 ***7.85 ***12.08 ***12.10 ***12.04 ***6.65 ***5.00
c ***0.25 ***0.71 ***−0.10 ***−0.36 ***0.39 ***0.72 ***−0.15 ***−0.09

Unconstr. volume ***0.09 ***0.07 ***0.09 ***0.17 ***0.09 ***0.09 ***0.10 ***0.10
[3.15] [2.66] [2.88] [3.77] [11.35] [11.56] [10.83] [8.74]

Constr. volume **−0.08 *−0.09 −0.06 −0.02 *0.02 0.01 **0.03 **0.03
[2.11] [1.90] [1.55] [0.73] [1.65] [0.73] [2.19] [2.55]

Realised variance **0.02 **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03 ***0.03
[2.07] [2.10] [2.11] [2.07] [8.35] [8.34] [8.37] [7.98]

Constr.-Unconstr. ***−0.17 ***−0.16 ***−0.14 ***−0.19 ***−0.07 ***−0.08 ***−0.08 ***−0.07
[3.50] [2.88] [2.90] [3.27] [4.28] [4.88] [4.81] [3.43]

R2 in % 0.13 0.11 0.11 0.16 3.72 3.74 3.76 3.69
BIC 91.61 91.61 91.61 91.05 49.24 49.23 49.23 48.54
Avg. #Time periods 2,280 2,280 2,280 2,182 2,284 2,284 2,284 2,185
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variables are the 1-day lagged
value of primary FX dealer banks’: quarterly Value-at-Risk measure (VaR, columns 1 and 6), quarterly He et al.
(2017) leverage ratio (HKM, columns 2 and 7), daily credit default spread (CDS, columns 3 and 8), and daily
funding cost yield (DFC, columns 4 and 9). Note that we weight each top 10 FX dealer bank (based on the
Euromoney FX survey) by its relative market share when computing a cross-sectional average. The optimal
parameters γ and c are determined by nonlinear least squares minimising the concentrated sum of squared
errors. Both dependent and independent variables are taken in logs and changes. The sample covers the period
from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.
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Figure B.4: VLOOP: Constrained–Unconstrained coefficient and t-stat
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Note: This figure plots the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1)
of the LSTAR model in Eq. (4) with VLOOP being the dependent variable and conditional on varying the number
of lags in the regime variable DCMt−n for n = 1, 2, ..., 22. The sample covers the period from 1 November 2011 to
30 September 2020.

Figure B.5: Constrained–Unconstrained coefficient and t-stat
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Note: This figure plots the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1)
of the LSTAR model in Eq. (4) with TCOST being the dependent variable and conditional on varying the number
of lags in the regime variable DCMt−n for n = 1, 2, ..., 22. The sample covers the period from 1 November 2011 to
30 September 2020.
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Table B.6: London hours: Smooth transition regression with DCM as state variable

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ *12.03 ***4.97 ***6.04 *12.04 ***12.04 ***12.06 ***12.07 ***12.04
c ***0.42 ***0.72 ***0.75 ***0.35 ***0.24 ***0.24 ***0.27 ***0.26

Unconstr. volume ***0.11 ***0.11 **0.06 ***0.10 ***0.13 ***0.13 ***0.10 ***0.14
[3.99] [4.13] [2.20] [3.17] [11.90] [11.47] [7.89] [10.10]

Constr. volume −0.07 −0.09 **−0.13 −0.08 *0.03 *0.03 0.00 0.03
[1.41] [1.59] [2.31] [1.56] [1.72] [1.76] [0.18] [1.43]

Amihud (2002) 0.01 0.00
[1.05] [0.51]

Realised variance ***0.05 ***0.03
[4.13] [3.80]

1M CIP basis 0.00 0.00
[0.97] [0.46]

Constr.-Unconstr. ***−0.18 ***−0.20 ***−0.19 ***−0.18 ***−0.10 ***−0.10 ***−0.09 ***−0.11
[3.08] [3.22] [3.11] [2.93] [4.91] [4.89] [4.47] [4.38]

R2 in % 0.11 0.12 0.24 0.10 1.82 1.82 2.75 1.86
Avg. #Time periods 2,173 2,173 2,173 1,970 2,186 2,185 2,185 1,981
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variable is the 1-day lagged
value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear
least squares minimising the concentrated sum of squared errors. Both dependent and independent variables
are taken in logs and changes. When aggregating hourly to daily data we omit any observations outside of the
main London stock market trading hours (i.e., from 8 am to 5 pm GMT). The sample covers the period from 1
November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust standard
errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic lag
selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and
*** denote significance at the 90%, 95%, and 99% levels.
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Table B.7: Smooth transition regression with DCM as state variable (euro triplets)

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ 12.09 12.01 12.06 12.03 ***4.94 ***12.08 **12.05 ***12.08
c −0.06 −0.06 −0.06 −0.07 ***−0.33 ***−0.21 ***0.53 ***−0.23

Unconstr. volume ***0.20 ***0.21 ***0.19 ***0.18 ***0.10 ***0.10 ***0.06 ***0.10
[4.56] [4.54] [4.13] [4.20] [8.86] [9.54] [6.84] [9.00]

Constr. volume **0.12 **0.12 **0.11 **0.11 ***0.05 ***0.05 0.01 ***0.05
[2.28] [2.41] [2.04] [2.01] [4.26] [4.37] [1.00] [4.22]

Amihud (2002) 0.01 *0.00
[0.88] [1.69]

Realised variance 0.01 ***0.04
[0.95] [9.07]

1M CIP basis 0.01 0.00
[1.24] [0.28]

Constr.-Unconstr. −0.09 −0.08 −0.08 −0.07 ***−0.06 ***−0.05 ***−0.04 ***−0.05
[1.21] [1.16] [1.13] [0.99] [3.28] [3.22] [2.93] [3.04]

R2 in % 0.71 0.70 0.71 0.61 3.33 3.37 5.91 3.55
Avg. #Time periods 2,183 2,182 2,182 2,092 2,186 2,184 2,184 2,095
#Currency triplets 6 6 6 6 6 6 6 6
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the 1-day lagged value
of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample consists of 6 euro-based currency pair triplets that do not involve any
dollar currency pairs (i.e., AUD-EUR-JPY, CAD-EUR-JPY, GBP-EUR-AUD, GBP-EUR-CAD, GBP-EUR-CHF, and
GBP-EUR-JPY) and covers the period from 1 November 2011 to 30 September 2020. The test statistics based on
Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using
the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are
reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.
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Appendix C. Estimating an SVAR with sign restrictions

We estimate a structural vector autoregression (SVAR) model of liquidity cost measures
(i.e., VLOOP or TCOST) and dealer-provided volume VLM. Let Yk,t = [Xk,t VLMk,t]

T be a
2 × 1 vector containing X ∈ {VLOOP, TCOST} and VLM in currency pair triplet k and day
t. The bivariate panel SVAR for Yk,t is:

Yk,t = αk +
l

∑
i=1

Bk,iYk,t−i + ξk,t, (C.1)

where Bk,i is a 2 × 2 matrix of coefficients, l the lag length, ξk,t = [ξX;k,t ξVLM;k,t]
T the reduced

form error, and αk is a 2 × 1 vector of currency triplet fixed effects. The residual ξk,t is:[
ξX;k,t

ξVLM;k,t

]
= Ak

[
δs

k,t

δd
k,t

]
, (C.2)

where Ak is a 2 × 2 matrix and δk,t = [δs
k,t δd

k,t]
T is a 2 × 1 vector. Based on Eqs (C.1) and (C.2),

the first column of Ak corresponds to changes in liquidity provision costs (i.e., VLOOP or
TCOST) and dealer-intermediated volume associated with an increase in δs

k,t, whereas the
second column corresponds to changes in liquidity costs and VLM associated with an increase
in δd

k,t. Following Goldberg (2020), if Ak satisfies the following sign restrictions:

sign(Ak) =

(
+ +

− +

)
, (C.3)

then δs
k,t can be interpreted as an inward shift in liquidity supply reflecting a tightening

of dealer constraints, whereas δd
k,t corresponds to an outward shift in customers’ liquidity

demand. In particular, the sign restrictions in Eq. (C.3) assume that supply shifts lead to
opposite-sign changes in liquidity costs and trading volumes, whereas demand shifts are
assumed to lead to same-sign changes in liquidity costs and volume.

To identify supply and demand shifts, we estimate Eqs (C.1) and (C.2) imposing the sign
restrictions in Eq. (C.3) using Bayesian methods. Specifically, we follow the approach of Uhlig
(2005) and others, which has become widely used to estimate models with sign restrictions.
Both the liquidity cost measure (i.e., VLOOP or TCOST) and dealer-intermediated volume
enter in log levels. Consider the reduced-form SVAR in Eq. (C.1) with parameters Bk =

[Bk,1, ..., Bk,l ] and covariance matrix Σk for currency pair triplet k. We use a weak Normal-
Wishart prior over these parameters. The lag length l is determined according to the Akaike
Information Criterion and is equal to 2 in our baseline estimation. The parameters of the
panel SVAR are Bk, Σk, and Ak, where Ak is the mapping from the liquidity supply and
demand shifts δk,t to the reduced-form residual ξk,t given by ξk,t = Akδk,t. The ultimate aim
is to draw from the posterior distribution of δk,t. Hence, we first draw from the posterior
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distribution over Bk and Σk. By definition, Ak has to satisfy Ak AT
k = Σk. Specifically, we draw

Ak by using Cholesky factorisation: Σk = chol(Σk)chol(Σk)
T. Next, we draw orthonormal

matrices Qk uniformly from the unit circle and compute Ak = chol(Σk)Qk. If the resulting Ak

satisfies the sign restrictions in Eq. (C.3) over 2 periods then we keep the draw and discard
it otherwise. When implementing this estimation procedure we make 500 draws over Bk and
Σk and, for each Bk and Σk, 500 draws over Qk. Eventually, the liquidity supply and demand
shift proxies are normalised to have mean zero and standard deviation equal to one.

For illustrative purposes, Figure C.1 (Figure C.2) shows estimates of the dynamic re-
sponses of VLOOP (TCOST) and VLM to supply and demand shifts for the EUR-USD-JPY
currency pair triplet.33 By construction, concurrently with a liquidity supply shift, VLOOP
(TCOST) rises and VLM positions decline. As shown in Figure C.1, contemporaneous with a
liquidity supply shift, VLOOP (TCOST) rises 31% (6%) and VLM positions decline 15% (18%),
according to the posterior mean. Contrarily, a liquidity demand shock is associated with an
increase in VLOOP (TCOST) and VLM by 25% and 12% (13% and 21%), respectively.

Figure C.1: Dynamic impulse response function for EUR-USD-JPY; VLOOP
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Note: This figure plots the estimated dynamic response of the shadow cost of intermediary constraints (VLOOP)
and dealer-intermediated volume (VLM) associated with liquidity supply and demand shifts. The median re-
sponse is shown by the black solid line. The grey shaded area marks a pointwise 95% confidence interval around
the median. The sample covers the period from 1 November 2011 to 30 September 2020.

Figure C.3 presents a scatter plot of the average 30-day rolling window correlation be-

33The impulse response functions for the other 14 currency pair triplets exhibit qualitatively similar patters.
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Figure C.2: Dynamic impulse response function for EUR-USD-JPY; TCOST
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Note: This figure plots the estimated dynamic response of dealers’ compensation for enduring inventory imbal-
ances (TCOST) and dealer-intermediated volume (VLM) associated with liquidity supply and demand shifts. The
median response is shown by the black solid line. The grey shaded area marks a pointwise 95% confidence inter-
val around the median. The sample covers the period from 1 November 2011 to 30 September 2020.

tween each of our two liquidity cost measures (i.e., VLOOP and TCOST) and total dealer-
intermediated trading volume against our dealer constraint measure DCM. For ease of illus-
tration, we show the cross-sectional average of these rolling window correlations across 15
triplets of currency pairs. There are two key takeaways from this figure: First, both dimen-
sions of liquidity costs (i.e., VLOOP and TCOST) covary positively on average with dealer-
intermediated trading volume. Second, the correlation between the cost of liquidity provision
(i.e., VLOOP and TCOST) and trading volume weakens substantially as DCM increases.

Figures C.4 and C.5 plot the rolling correlation between each of our two liquidity cost
measures (i.e., VLOOP or TCOST) and dealer-provided volumes. It is easy to see that the
strong positive association between liquidity costs and trading volume breaks down during
the Covid-19 market turmoil in March and April 2020 across all 15 currency pair triplets.
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Figure C.3: Rolling correlations of liquidity costs and volumes vs dealer constraints
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Note: This figure plots the cross-sectional average of the 30-day rolling window correlation between the shadow
cost of intermediary constraints and total dealer-intermediated trading volume (i.e., cor(VLOOP, Volume), left
figure) as well as between dealers’ compensation to endure inventory imbalances and total dealer-intermediated
trading volume (i.e., cor(TCOST, Volume), right figure) in percent (%). Our dealer constraint measure (DCM)
is in units of standard deviations. We define DCM as the first principal component of the top 10 FX dealers’
(based on the Euromoney FX survey) quarterly Value-at-Risk measure (VaR), quarterly He et al. (2017) leverage
ratio (HKM), daily credit default spread (CDS), and daily debt funding cost (DFC). The bold black lines are linear
regression lines. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure C.4: Rolling window correlation VLOOP and VLM
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Note: This figure plots the 30- and 252-day rolling window correlation of daily cumulative no-arbitrage deviations
VLOOP (i.e., shadow cost of intermediary constraints) and dealer-intermediated trading volume VLM. The sam-
ple covers the period from 1 November 2011 to 30 September 2020.
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Figure C.5: Rolling window correlation TCOST and VLM
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Note: This figure plots the 30- and 252-day rolling window correlation of daily cumulative round-trip transaction
cost TCOST (i.e., dealers’ compensation for enduring inventory imbalances) and dealer-intermediated trading
volume VLM. The sample covers the period from 1 November 2011 to 30 September 2020.
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Appendix D. Quasi-natural experiment: Swiss franc decap

Table D.1 reports the results from daily panel regressions of the form:

ρk,t = α + η1Dk,t + η2Postt + η3(Dk,t × Postt) + κ′wk,t + ϵk,t, (D.1)

where the dependent variable is the 30-day rolling window correlation of liquidity provision
costs (i.e., VLOOP or TCOST) and dealer-provided trading volume (i.e., VLM), α denotes
the intercept, Dk,t is equal to one if currency pair triplet k contains the Swiss franc, Postt is
one for the time period after the removal of the Swiss franc cap on 15 January 2015, and
η3 is the difference-in-differences (DnD) coefficient. wk,t collects additional control variables
such as the realised variance or Amihud (2002) price impact measure. Except for the case
where ρ = cor(VLOOP, VLM) we find the DnD regression coefficient η3 to be negative and
statistically significant. For instance, after the removal of the Swiss franc cap the correlation
between TCOST and VLM is 54 percentage points lower for currency pair triplets involving
the Swiss franc. Figures D.1 and D.2 illustrate the drop in the rolling window correlation
coefficient based on each of our two liquidity cost measures (i.e., VLOOP or TCOST) after the
removal of the Swiss franc cap.

Figure D.1: Event study: cor(VLOOP, VLM) around the Swiss franc decap
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Note: This figure plots the cross-sectional average of 30-day rolling window correlations of daily VLOOP (i.e.,
shadow cost of intermediary constraints) and dealer-intermediated trading volume VLM. The “Treated” group
comprises currency pair triplets that involve the Swiss franc (i.e., EUR-USD-CHF and GBP-USD-CHF) and the
“Control” group contains the remaining 13 triplets.
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Figure D.2: Event study: cor(TCOST, VLM) around the Swiss franc decap
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Note: This figure plots the cross-sectional average of 30-day rolling window correlations of daily TCOST (i.e.,
dealers’ compensation for enduring inventory imbalances) and dealer-intermediated trading volume VLM.
The “Treated” group comprises currency pair triplets that involve the Swiss franc (i.e., EUR-USD-CHF and
GBP-USD-CHF) and the “Control” group contains the remaining 13 triplets.
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Table D.1: Event study panel regression: Removal of the Swiss franc cap

cor(VLOOP,Volume) cor(TCOST,Volume)

(1) (2) (3) (4) (5) (6)

Intercept ***0.16 ***0.16 ***0.19 ***0.49 ***0.49 ***0.49
[11.42] [11.40] [11.55] [23.15] [23.21] [26.74]

Dk,t 0.04 0.04 0.04 0.00 0.00 0.00
[1.49] [1.46] [1.63] [0.13] [0.05] [0.14]

Postt *−0.04 *−0.04 −0.03 ***−0.35 ***−0.35 ***−0.34
[1.93] [1.94] [1.23] [12.36] [12.33] [11.48]

Dk,t × Postt 0.00 0.00 0.05 ***−0.54 ***−0.54 ***−0.53
[0.03] [0.02] [1.17] [18.99] [19.33] [19.00]

Realised variance ***0.00 ***0.02 ***−0.01 **−0.01
[6.16] [5.48] [6.40] [2.51]

Amihud (2002) ***−0.04 −0.02
[4.55] [1.62]

R2 in % 29.35 29.37 31.19 86.11 86.19 86.27
Adj. R2 in % 29.28 29.28 31.08 86.09 86.18 86.25
Avg. #Time periods 207 207 207 207 207 207
#Exchange rates 15 15 15 15 15 15

Note: This table reports results from daily panel regressions of the form ρk,t = α + η1Dk,t + η2Postt + η3(Dk,t ×
Postt) + κ′wk,t + ϵk,t, where the dependent variable is the 30-day rolling window correlation of our liquidity cost
measure (i.e., VLOOP or TCOST) and trading volume (i.e., VLM), α denotes the intercept, Dk,t is equal to one if
currency pair triplet k contains the Swiss franc, Postt is one for the time period after the removal of the Swiss
franc cap on 15 January 2015, and η3 is the difference-in-differences coefficient. wk,t collects additional control
variables such as the realised variance or Amihud (2002) price impact measure. The sample covers the period
from 9 May 2014 to 26 February 2015. The test statistics based on Driscoll and Kraay (1998) robust standard errors
allowing for random clustering and serial correlation (using the plug-in procedure for automatic lag selection by
Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and
99% levels.
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Appendix E. Additional empirical results

Figure 2: Identifying a triangular arbitrage opportunity
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Note: This figure provides a schematic overview of two triangular arbitrage strategies, where the arrows denote
the direction. Panel A shows the hypothetical profit of a trader starting with one euro, first exchanging it to

1
0.820 = 1.220 US dollars, then exchanging 1.220 US dollars to Canadian dollars at the midquote price of 1.255
Canadian dollars per US dollar. This yields 1.531 Canadian dollars that are exchanged back to euros at the
CADEUR midquote that is equivalent to 1

EURCADMID = 1
1.505 . Such a round trip yields 1.017 euros or equivalent a

positive return of 1.7% in this example. Panel B embraces the same logic but going the opposite direction, that is,
first from euro to Canadian dollar, to US dollar and then back to euro yielding a negative return of −1.7%.
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Figure 3: Triangular arbitrage trade with transaction costs
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Note: This figure provides a schematic overview of two triangular arbitrage strategies, where the arrows denote
the direction. Panel A shows the profit of first exchanging one euro to 1

0.83 = 1.21 US dollars at the ask price,
then exchanging 1.21 US dollars to Canadian dollars at the bid price of 1.25 Canadian dollars per US dollar.
This yields 1.51 Canadian dollars that are exchanged back to euros at the CADEUR bid price that is equivalent
to 1

EURCADASK = 1
1.52 . Such a round trip yields 0.991 euros or equivalent a negative return of −0.9%. Panel B

embraces the same logic but going the opposite direction, that is, first from euro to Canadian dollar, to US dollar
and then back to euro.

Figure 4: Law of one price violations, intermediated volume, dealer constraints
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Note: This figure plots the cross-sectional average of the shadow cost of intermediary constraints (VLOOP, black
solid line) against total trading volume (Total volume, black dashed line) in units of standard deviations. Both
time-series correspond to 22-day moving averages. The grey line plots our dealer constraint measure (DCM). The
grey shaded areas correspond to times when DCM exceeds its 75% percentile. The sample covers the period from
1 November 2011 to 30 September 2020.
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Figure 5: Round-trip trading costs, intermediated volume, dealer constraints
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Note: This figure plots the cross-sectional average of dealers’ compensation for enduring inventory imbalances
(TCOST, black solid line) against total trading volume (Total volume, black dashed line) in units of standard
deviations. Both time-series correspond to 22-day moving averages. The grey line plots our dealer constraint
measure (DCM). The grey shaded areas correspond to times when DCM exceeds its 75% percentile. The sample
covers the period from 1 November 2011 to 30 September 2020.

Table E.1: Summary statistics

Liquidity cost in bps Volume in $bn Bid-ask spread in bps Volatility in bps VLOOP>TCOST in %

VLOOP TCOST Direct Synthetic Direct Synthetic Direct

AUD-USD-JPY 0.24 4.88 0.18 5.11 4.15 5.87 14.38 0.18
AUD-USD-NZD 0.29 5.85 0.09 2.01 4.44 7.43 9.32 0.02
CAD-USD-JPY 0.30 4.67 0.03 5.32 4.29 5.21 12.66 0.43
EUR-USD-AUD 0.19 4.52 0.14 7.72 3.54 5.64 11.54 0.04
EUR-USD-CAD 0.28 4.25 0.08 7.94 3.55 4.99 10.15 0.07
EUR-USD-CHF 0.21 3.98 0.37 6.76 2.62 5.41 6.38 0.10
EUR-USD-DKK 0.14 3.89 0.09 6.17 2.54 5.30 1.82 0.05
EUR-USD-GBP 0.19 4.07 0.61 8.16 3.19 4.95 9.52 0.03
EUR-USD-JPY 0.21 3.90 0.65 9.67 3.14 4.83 11.43 0.66
EUR-USD-NOK 0.26 7.69 0.24 6.25 6.25 9.40 11.01 0.05
EUR-USD-SEK 0.23 6.86 0.27 6.27 5.41 8.42 9.18 0.05
GBP-USD-AUD 0.20 5.08 0.04 3.60 4.22 5.99 12.53 0.02
GBP-USD-CAD 0.29 4.69 0.03 3.81 4.00 5.34 10.85 0.05
GBP-USD-CHF 0.19 4.94 0.03 2.64 4.09 5.76 10.69 0.03
GBP-USD-JPY 0.19 4.47 0.20 5.55 3.85 5.18 12.78 0.62

Note: This table reports the time-series average of hourly triangular no-arbitrage deviations VLOOP in basis
points (bps), round-trip trading costs TCOST in bps, direct trading volume in non-dollar pairs (e.g., AUDJPY) in
$bn, synthetic volume in dollar pairs in $bn, direct and synthetic relative bid-ask spreads, and realised volatility
in non-dollar pairs in bps. By “synthetic” we refer to the sum of trading volumes and relative bid-ask spreads in
two dollar pairs (e.g., USDAUD and USDJPY) within a currency pair triplet. The last column shows the relative
share of VLOOP>TCOST in %. Each row corresponds to a triplet of currency pairs, for example, AUDJPY,
USDAUD, and USDJPY that we abbreviate as AUD-USD-JPY. The sample covers the period from 1 November
2011 to 30 September 2020.
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Table E.2: Comparison EBS vs Olsen bid and ask quotes

RMSE MAE CORR

BID ASK BID ASK BID ASK

AUDJPY 0.286 0.232 0.131 0.126 0.996 0.997
AUDNZD 0.001 0.001 0.001 0.001 0.999 0.999
AUDUSD 0.001 0.002 0.001 0.001 0.998 0.997
CADJPY 0.335 0.315 0.148 0.147 0.995 0.996
EURAUD 0.003 0.002 0.002 0.002 0.998 0.998
EURCAD 0.002 0.002 0.001 0.001 0.998 0.998
EURCHF 0.001 0.001 0.001 0.001 0.993 0.992
EURDKK 0.001 0.001 0.001 0.001 0.991 0.988
EURGBP 0.001 0.001 0.001 0.001 1.000 1.000
EURJPY 0.211 0.201 0.124 0.124 0.999 0.999
EURNOK 0.016 0.012 0.008 0.008 0.996 0.998
EURSEK 0.009 0.009 0.006 0.006 0.999 0.999
EURUSD 0.002 0.002 0.001 0.001 0.997 0.998
GBPAUD 0.004 0.005 0.003 0.003 1.000 0.999
GBPCAD 0.004 0.004 0.003 0.003 0.999 0.999
GBPCHF 0.003 0.003 0.002 0.002 0.999 0.999
GBPJPY 0.523 0.590 0.251 0.257 0.999 0.999
GBPUSD 0.002 0.003 0.001 0.001 1.000 0.999
NZDUSD 0.001 0.001 0.001 0.001 0.999 0.999
USDCAD 0.002 0.002 0.001 0.001 0.999 0.999
USDCHF 0.001 0.001 0.001 0.001 0.998 0.998
USDDKK 0.007 0.007 0.005 0.005 0.999 0.999
USDJPY 0.178 0.194 0.112 0.111 1.000 0.999
USDNOK 0.014 0.016 0.010 0.010 0.998 0.998
USDSEK 0.018 0.013 0.009 0.008 0.999 0.999

Note: This table reports the root mean squared error (RMSE, columns 1 and 2), the mean absolute error (MAE,
columns 3 and 4), and the pairwise correlation coefficient (CORR, columns 5 and 6) for bid and ask quotes based
on EBS and Olsen data, respectively. The sample covers the period from 4 January 2016 to 30 December 2016.

Table E.3: Correlations in percent

VLOOP TCOST VOD VOS BAD BAS RVD

TCOST ***28.10
VOD ***−0.48 ***6.19
VOS ***4.93 ***16.53 ***61.87
BAD ***23.24 ***74.34 ***1.85 ***9.59
BAS ***20.68 ***75.85 ***17.01 ***34.91 ***83.36
RVD ***15.52 ***37.78 ***27.43 ***37.57 ***54.60 ***49.05
RVS ***13.22 ***44.43 ***31.47 ***55.92 ***45.59 ***69.84 ***74.85

Note: This table reports the pairwise correlation coefficient of hourly triangular no-arbitrage deviations VLOOP,
trading costs TCOST, direct trading volume VOD in non-dollar pairs (e.g., XXXYYY), synthetic trading volume
VOS in dollar pairs (e.g., the average across USDXXX and USDYYY), relative bid-ask spread BAD and realised
volatility RVD in non-dollar pairs, as well as relative bid-ask spreads BAS and realised volatility RVS in dollar
currency pairs in percent (%). Significant correlations at the 90%, 95%, and 99% levels are represented by asterisks
*, **, and ***, respectively. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure E.1: Comparison of no-arbitrage violations using EBS vs Olsen data
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Note: This figure plots the daily cumulative sum of hourly no-arbitrage deviations (VLOOP) computed based on
EBS and Olsen data, respectively. The percentages in the titles report the Pearson correlation coefficient between
the two time-series. The sample covers the period from 8 June 2016 to 30 December 2016.
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Figure E.2: No-arbitrage violations and trading volumes
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Note: This figure plots total trading volume VLM against no-arbitrage deviations VLOOP (i.e., shadow cost of
intermediary constraints) for 15 triplets of currency pairs. Currency pair triplets are denoted as XXX-USD-YYY,
consisting of two dollar currency pairs (i.e., USDXXX, and USDYYY) as well as one non-dollar currency pair (i.e.,
XXXYYY). The percentages in the titles report the Pearson correlation coefficient between VLM and VLOOP. Both
time-series correspond to 22-day moving averages. The sample covers the period from 1 November 2011 to 30
September 2020.
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Figure E.3: Round-trip transaction costs and trading volumes
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Note: This figure plots total trading volume VLM against round-trip transaction cost TCOST (i.e., dealers’ com-
pensation for enduring inventory imbalances) for 15 triplets of currency pairs. Currency pair triplets are denoted
as XXX-USD-YYY, consisting of two dollar currency pairs (i.e., USDXXX, and USDYYY) as well as one non-dollar
currency pair (i.e., XXXYYY). The percentages in the titles report the Pearson correlation coefficient between
VLM and TCOST. Both time-series correspond to 22-day moving averages. The sample covers the period from 1
November 2011 to 30 September 2020.
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Figure E.4: Autocorrelated trading volume
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Note: This figure plots the autocorrelation coefficient of total dealer-provided trading volume VLM for 15 triplets
of currency pairs. Currency pair triplets are denoted as XXX-USD-YYY, consisting of two dollar currency pairs
(i.e., USDXXX, and USDYYY) as well as one non-dollar currency pair (i.e., XXXYYY). The solid lines are approx-
imate 95% confidence bounds. Both time-series correspond to 22-day moving averages. The sample covers the
period from 1 November 2011 to 30 September 2020.
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